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Motivation

Three approaches to discretize time-dependent PDEs

Space-time
discretizations
From a space-time
variational formulation

Space-time
DPG/LS methods

Method of discretization
in time
FD in time + sequence of
variational problems in
space

BE in time +
DPG/LS in space

Method of Lines
Discretization in space +
system of ODEs

Bubnov-Galerkin in
space + Exponential
Integrators in time
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Motivation

Main Focus: Discontinuous Petrov-Galerkin (DPG) method

In the context of Method of Lines
Create a new time-marching scheme based on the DPG method
Couple it with DPG semidiscretizations in space
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[2] J. Muñoz-Matute, D. Pardo, and L. Demkowicz,
A DPG-based time-marching scheme for linear hyperbolic problems,
Computer Methods in Applied Mechanics and Engineering, 2021, vol. 373, pp. 113539.
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1 Summary of the DPG time-marching scheme

2 Coupling with DPG semidiscretization in space

3 Computing exponential related functions

4 Current and Future work
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Model problem and discretization in time

System of ODEs

Let I = (0,T) with T > 0{
U′(t) + AU(t) = F(t), ∀t ∈ Ī

U(0) = U0

where A ∈ Rs×s and U0 ∈ Rs×1.

We define a mesh Iτ of I

0 = t0 < t1 < . . . < tm−1 < tm = 1,

where Ik = (tk−1, tk), τ = tk − tk−1, ∀ k = 1, . . . ,m and Γτ denotes the
mesh skeleton in time.
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Variational formulation

Broken ultraweak variational formulation

Denoting by U := L2(I,Rs) and V := H1(Iτ ,Rs)
Find U ∈ U and Û = (Û1, . . . , Ûm) ∈ Rs×m s.t.

Bτ (U,V) + 〈Û,V〉Γτ
=

∫
I
(F(t),V)dt + U0V(0), ∀V ∈ V

where

Bτ (U,V) + 〈Û,V〉Γτ
:=

m∑
k=1

∫
Ik

(U,−V ′ + ATV)dt − (Ûk, [V]k).

Here, (·, ·) denotes the usual dot product in Rs and
[V]k = V(t+k )− V(t−k ), ∀k = 1, . . . ,m− 1 and [V]m = −V(t−m ).
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Optimal test functions

Optimal test functions corresponding to fields{
Given δU ∈ U find VδU ∈ V s.t

(VδU, δV)V = Bτ (δU, δV), ∀δV ∈ V

Optimal test functions corresponding to traces{
Given δÛ ∈ Rs×m find VδÛ ∈ V s.t

(VδÛ, δV)V = 〈δÛ, δV〉Γh , ∀δV ∈ V

where the inner product is

||V||2V =

m∑
k=1

|| − V ′ + ATV||2Ik
+ |V(t−k )|2,

where || · ||Ik denotes the L2-norm over each time interval Ik.
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Optimal test functions for piecewise polynomials

Approximation of the field variables

U(t)|Ik ≈ Uk
τ (t) :=

q∑
l=0

Uk
τ,l

(
t − tk−1

τ

)l

, ∀k = 1, . . . ,m,

The optimal test functions are defined recursively at each time interval
∀k = 1, . . . ,m as

V̂k(AT , t) = eAT (t−tk)

Vk
r (AT , t) =

(
AT)−1

((
t − tk−1

τ

)r

Is +
r
τ

Vk
r−1(AT , t)− V̂k(AT , t)

)
∀r = 0, . . . , q
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DPG time-marching scheme


Ûk = V̂(A, tk−1)Ûk−1 +

∫
Ik

V̂(A, t)F(t)dt

q∑
l=0

Uk
τ,l

∫
Ik

(
t − tk−1

τ

)l+r

dt = Vk
r (A, tk−1)Ûk−1 +

∫
Ik

Vk
r (A, t)F(t)dt

∀r = 0, . . . , q and Û0 = U0.

tk−1 tk

Ûk−1

Uk
τ (t)

Ûk

9/38



DPG time-marching scheme


Ûk = V̂(A, tk−1)Ûk−1 +
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Example: 1D+time heat equation

1D+time heat equation

Let I = (0,T) with T > 0 and Ω = (0, 1)
ut(x, t)− uxx(x, t) = f (x, t), in Ω× I

u(0, t) = u(1, t) = 0, in I

u(x, 0) = u0(x), in Ω

Bubnov-Galerkin method in space{
(ut(t), v) + (ux(t), vx) = (f (t), v), ∀v ∈ H1

0(Ω)

(u(0),w) = (u0,w), ∀w ∈ L2(Ω)

Approximation: Vh = span{φj(x)} ⊂ H1
0(Ω), uh(x, t) =

s∑
j=1

uh,j(t)φj(x)

Square system of ODEs: A = M−1K{
MU′(t) + KU(t) = F(t), ∀t ∈ I

M0U(0) = U0
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Example: 1D+time heat equation

Approximated solution for q = 0, 1, 2.
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Model problem and semidiscretization in space

1D+time advection-reaction equation

Let I = (0,T) with T > 0 and Ω = (0, 1)
ut(x, t) + bux(x, t) + cu(x, t) = f (x, t), in Ω× I

u(0, t) = g(t), in I

u(x, 0) = u0(x), in Ω

where b and c are positive constants.

We define a mesh Ωh of Ω

0 = x0 < x1 < . . . < xn−1 < xn = 1,

where Ωi = (xi−1, xi), h = xi − xi−1, ∀ i = 1, . . . , n and Γh denotes the
mesh skeleton in space.
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The logic behind the construction

Petrov-Galerkin method

Discontinuous Petrov-Galerkin method

Practical Discontinuous Petrov-Galerkin method
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Petrov-Galerkin formulation

Test space: H1
+(Ω) := {v ∈ H1(Ω) | v(1) = 0}.

PG formulation
Find u ∈ C1(Ī; L2(Ω)) s.t. ∀t ∈ Ī

(ut(t), v) + b(u(t), v) = f̃ (t, v), ∀v ∈ H1
+(Ω)

(u(0),w) = (u0,w), ∀w ∈ L2(Ω)

where

b(u(t), v) := (u(t),−bvx + cv)

f̃ (t, v) := (f (t), v) + g(t)bv(0)
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Petrov-Galerkin discretization

Discrete spaces: s := dim(Uh) = dim(Vh)

Uh := Pp(Ωh), Vh := Pp+1(Ωh) ∩ H1
+(Ω)

PG discretization
Find uh ∈ C1(Ī;Uh) s.t. ∀t ∈ Ī

(uh,t(t), vh) + b(uh(t), vh) = f̃ (t, vh) ∀v ∈ Vh,

(uh(0),wh) = (u0,wh), ∀wh ∈ Uh

Square system of ODEs: A = M−1K{
MU′(t) + KU(t) = F̃(t), ∀t ∈ Ī

M0U(0) = Ũ0

Optimal choice of spaces for u′ = f (symmetric K).
Rectangular system in higher dimensions.
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DPG formulation

Trial and test spaces: U := L2(Ω) and V := H1(Ωh)

DPG formulation


Find u ∈ C1(Ī;U) and ū = (ū1, . . . , ūn) ∈ C(Ī) s.t. ∀t ∈ Ī

(ut(t), v) + bh(u(t), v) + 〈ū(t), v〉Γh = f̃ (t, v), ∀v ∈ V
(u(0),w) = (u0,w), ∀w ∈ U

We define time-dependent interface variables

ūi(t) := u(xi, t), ∀i = 1, . . . , n,

and the bilinear form is

bh(u(t), v) + 〈ū(t), v〉Γh :=

n∑
i=1

(u(t),−bvx + cv)Ωi −
n∑

i=1

ūi(t)b[v]i,

where [v]i = v(x+
i )− v(x−i ), ∀i = 1, . . . , n− 1 and [v]n = −v(x−n ).
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DPG discretization

u(x, t)

ū(t)

û(x)

t
x
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DPG discretization

Selecting
Uh := Pp(Ωh), Vh := Pp+∆p(Ωh),

with ∆p ≥ 1, we obtain a rectangular system{
MU′(t) + KU(t) + Rū(t) = F̃(t), ∀t ∈ Ī

M0U(0) = Ũ0

Optimal testing {
Given δu ∈ U find vδu ∈ V s.t

(vδu, δv)V = bh(δu, δv), ∀δv ∈ V,{
Given δū ∈ Rn find vδū ∈ V s.t

(vδū, δv)V = 〈δū, δv〉Γh , ∀δv ∈ V.

Discretization:For any δuh ∈ Uh and δū ∈ Rn we have

vδuh = G−1Kδuh, vδū = G−1Rδū.
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DPG discretization

We obtain the following square system of ODEs
KTG−1MU′(t) + KTG−1KU(t) + KTG−1Rū(t) = KTG−1F̃(t), ∀t ∈ Ī

RTG−1MU′(t) + RTG−1KU(t) + RTG−1Rū(t) = RTG−1F̃(t)

M0U(0) = Ũ0

Eliminating the interface variables{
KTS1MU′(t) + KTS1KU(t) = KTS1F̃(t), ∀t ∈ Ī

M0U(0) = Ũ0

where
S1 = G−1 − G−1R(RTG−1R)−1RTG−1

and the matrix A of the system is

A = (KTS1M)−1KTS1K.

Matrices K, M and G are block diagonal but R is not =⇒ KTS1M is dense
Non practical!

19/38



Practical DPG formulation

We maintain the optimal test function vδu for the fields and we introduce
Given δū ∈ Rn find vδū ∈ V and u ∈ U s.t

(vδū, δv)V − bh(u, δv) = 〈δū, δv〉Γh , ∀δv ∈ V
(δu, vδū) = 0, ∀δu ∈ U

Discretizing we obtain vδū = ST
2 Rδū where

S2 = G−1 − G−1M(KTG−1M)−1KTG−1

which leads to the following system of ODEs
KTG−1MU′(t) + KTG−1KU(t) + KTG−1Rū(t) = KTG−1F̃(t), ∀t ∈ Ī,

RTS2KU(t) + RTS2Rū(t) = RTS2F̃(t),

M0U(0) = Ũ0,
(2.1)
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Practical DPG formulation

Eliminating the interface variables we obtain the final system{
KTG−1MU′(t) + KTS3KU(t) = KTS3F̃(t), ∀t ∈ Ī

M0U(0) = Ũ0

where
S3 = G−1 − G−1R(RTS2R)−1RTS2

and the matrix is
A = (KTG−1M)−1KTS3K

Here, the inversion of matrix KTG−1M can be computed locally.

The method is consistent with steady-state solutions.

21/38



Inner product

Adjoint graph norm

||v||2V =

n∑
i=1

||v||2Ωi
+ || − bvx + cv||2Ωi

Localizable adjoint norm

||v||2V =

n∑
i=1

|| − bvx + cv||2Ωi
+ b|v(x−i )|2

where || · ||Ωi denotes the L2-norm over each element Ωi.

For pure advection (c = 0), the adjoint graph norm leads a singular
KTG−1M matrix.
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Numerical results

Some observations:
No difference between employing practical and classical DPG methods
and adjoint or adjoint graph norm.
For pure convection problems the three discretizations in space deliver
the same solution.
For convection-reaction problems, the PG discretization is suboptimal.

Error for the fields:

E :=

(∫
I
||u(x, t)− uτh(x, t)||2

L2(Ω)
dt
)1/2

Error for the traces:

Ê1 :=

(
m∑

k=1

||u(x, tk)− ûk
h(x)||2

L2(Ω)

)1/2

Ê2 := max
1≤k≤m

||u(x, tk)− ûk
h(x)||

L2(Ω)
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Pure advection: smooth solution

Approximation of fields with p = 0, 1 (rows) and q = 0, 1 (columns).
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Pure convection: smooth solution

Approximation of traces with p = 0, 1 (rows) and q = 0, 1 (columns).
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Pure advection: smooth solution
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Large reaction term

PG method in space (top row) and DPG method (bottom row) for p = 0, 1, 2 and ∆p = 2.
Reaction term c = 104.
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Large reaction term
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Large reaction term
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Ê 2

Convergence of traces (DPG)

p = 0
p = 1
p = 2

30/38



Transport problem: Continuous non-smooth solution

Approximation of fields (left) and traces (center) for p = q = 1.

Snapshot at t = 0.25.
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Transport problem: Discontinuous solution (traces)

Snapshots a discontinuous solution with q = 0 and p = 2. Trace variables for a fine grid in
time and different mesh sizes space.
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Transport problem: Discontinuous solution (fields)

Snapshots a discontinuous solution with q = 0 and p = 2. First row: Field variables for a fine
grid in time and different mesh sizes in space. Second row: Field variables for a fine mesh in
space and different time step sizes.
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Exponential quadrature rule

Time-marching scheme: ∀k = 1, . . . ,m and ∀r = 0, . . . , q
Ûk = V̂(A, tk−1)Ûk−1 +

∫
Ik

V̂(A, t)F(t)dt

q∑
l=0

Uk
τ,l

∫
Ik

(
t − tk−1

τ

)l+r

dt = Vk
r (A, tk−1)Ûk−1 +

∫
Ik

Vk
r (A, t)F(t)dt

the optimal test functions can be expressed in terms of the so-called
ϕ-functions 

ϕ0(z) = ez,

ϕq(z) =

∫ 1

0
e(1−θ)z θq−1

(q− 1)!
dθ, ∀q ≥ 1,

Lowest order method (r = 0){
Ûk = Ûk−1 + τϕ1(−τA)(F(tk−1)− AÛk−1)

Uk
τ,0 = ϕ1(−τA)Ûk−1 + τϕ2(−τA)F(tk−1)
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Approximating the action ϕ-functions

Theorem

Let A ∈ Rs×s, W = [w1, . . . ,wq] ∈ Rs×q, and

Ã =

[
A W
0 J

]
∈ R(s+q)×(s+q), J =

[
0 Iq−1
0 0

]
∈ Rq×q;

it holds that eÃbj(1 : s) =

j∑
l=1

ϕl(A)wj−l+1, ∀j = 1, . . . , q,

bj being the j-vector in the canonical basis in Rs.

Scaling and squaring algorithm + truncated Taylor series

eÃbj ≈
(

Tm

(
1
σ

Ã
))σ

bj,

The values of m and σ are selected based on the sequence of norms: ||Ãk||1/k
1 .

[1] A. H. Al-Mohy and N. J. Higham
Computing the action of the matrix exponential, with an application to exponential integrators,
SIAM Journal on Scientific Computing, 33(2):488-511, 2011.
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Implementation for DPG semidiscretization

We have s := dim(Uh) and r := dim(Vh), where r � s

M,K ∈ Rr×s, G ∈ Rr×r, R ∈ Rr×n,

n being the number of interface variables in space.

Then, we can rewrite the final matrix of the system as

A = (KTG−1M)−1KTG−1K︸ ︷︷ ︸
A1

−(KTG−1M)−1KTG−1R︸ ︷︷ ︸
A2

(RTS2R)−1︸ ︷︷ ︸
A3

RTS2K︸ ︷︷ ︸
A4

,

where
A1 ∈ Rs×s and S2 ∈ Rr×r are block diagonal.
A2 ∈ Rs×n and A4 ∈ Rn×s are sparse and thin.
A3 ∈ Rn×n is dense but small.
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Current work

Speed-up the computation of ϕ-functions for matrices with Kronecker
sum structure.

J. Muñoz-Matute, D. Pardo, and V. M. Calo,
Exploiting the Kronecker product structure of ϕ-functions with applications to exponential
time integrators,
International Journal for Numerical Methods in Engineering, 2022, pp.1-20.

M. Croci and J. Muñoz-Matute,
Exploiting Kronecker structure in exponential integrators: fast approximation of the action of
ϕ-functions via quadrature,
To be submitted soon.

Multistage version of the DPG scheme for semi-linear problems.

J. Muñoz-Matute, D. Pardo, and L. Demkowicz,
Multistage DPG time-marching scheme for semi-linear problems,
In preparation.

MinRes methods in the dual norm employing neural networks.

C. Uriarte, D. Pardo, I. Muga, and J. Muñoz-Matute,
A deep double Ritz method for solving partial differential equations,
To be submitted soon.
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Future work

Possible research lines:

To extend the implementation of the presented DPG semidiscretization
in space together with DPG time-marching scheme to higher
dimensions.

(Goal-oriented) adaptivity in space together with adaptivity in time.

Apply the Kronecker algorithm for 3D+time phase-field models with
IGA (GPUs/parallelization).

Develop an adaptive strategy in time for the Multistage DPG method.

To employ deep neural networks to approximate the action of the
exponential-related functions.
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