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Introduction

Find (global) minimizer of integral functional

inf
u∈U

∫
Ω

E(x,u,∇u) dx

where u : Rn ⊇ Ω→ Rm is a vector-valued function sought in an

infinite-dimensional energy space U with gradient∇u ∈ Rn×m , and E is a

real-valued energy functional.

Foundational question for many problems in (nonlinear) mechanics: nonlinear

elasticity, pattern formation equations, etc.

Goal: Find practical algorithm producing discretizations that rigorously converge to

the global minimum, when E is polynomial in its inputs (and satisfies some technical

conditions ensuring existence of solutions to original problem).
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Introduction

inf
u∈U

∫
Ω

E(x,u,∇u) dx

has a minimizer if U = W 1,p
0 and E is p-coercive, exhibits p-growth and

quasiconvex wrt∇u in the sense of Morrey.

Approaches:

Variational argument to produce Euler-Lagrange equations, discretize them,

solve using ‘‘Newton’s method’’. Problem: Only finds approximations to local

stationary solutions, not global.

Discretize minimization problem directly and solve resulting finite-dimensional

minimization. Problem: Convergence to original infinite-dimensional problem

only if the discrete global minimum is found, but this typically cannot be

guaranteed (Bartels, 2017; Arada, 2002).

Insight: Take second approach and use recent results from multivariate polynomial

optimization to rigorously compute the discrete global minimum by formulating as a

sequence of convex relaxations.
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Discretization

inf
u∈U

∫
Ω

E(x,u,∇u) dx ≤ min
uh∈Uh

∫
Ω

E(x,uh ,∇uh) dx

x1 x2 x3 xN+1xNxN−1x0

· · ·
ϕ1

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
Ω1 Ω2 Ω3 ΩN ΩN+1

ϕ2 ϕ3 ϕN−1 ϕN

︸ ︷︷ ︸
Ω

Use ‘‘hat’’ functions:

uh(x) =
N∑

j=1

ξjϕj(x)

Uh = span{ϕj}N
j=1

Result is a polynomial optimization problem (POP) in the variables ξj representing

the unknown DOF:

min
uh∈Uh

∫
Ω

E(x,uh ,∇uh) dx = min
ξ∈RN

f (ξ) e.g. E = 1
100 |∇u|2+(u + 1)2(u − 2)2

Here, f is polynomial in ξj, since E is polynomial (note the powers of ϕj(x) can be

integrated exactly).
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Polynomial optimization

Lasserre (2001) -- using Putinar’s positivstellensatz in real algebraic geometry --

noticed the non-convex global POP could be solved trough a series of convex

relaxations involving sum-of-squares (SOS) polynomials that can be formulated as

semidefinite programs (SDPs):

min
|ξj|≤B

f (ξ) = lim
ω→∞

max λ s.t. f (ξ)− λ = σ0(ξ) +
N∑

j=1

(B2 − ξ2
j )σj(ξ)︸ ︷︷ ︸

(convex) moment-SOS relaxation of order ω (SDPω)

where σ0 and σj are SOS of order 2ω and 2ω − 2 respectively,...

relaxation order↗

BUT only applies for bounded DOF |ξj| ≤ B. Thus,

Trick: To ensure boundedness, use UB
h = {uh =

∑N
j=1 ξjϕj(x) | |ξj| ≤ B} instead

of Uh and choose B = 1
h so that UB

h → Uh → U as h → 0.

inf
u∈U

∫
Ω

E(x,u,∇u) dx ≤ min
uh∈UB

h

∫
Ω

E(x,uh ,∇uh) dx = min
|ξj|≤B

f (ξ)
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Sparse polynomial optimization

So it is possible to solve the finite-dimensional global POP.

Issue: for ' 10 DOF, computational cost is prohibitive. Even in 2D we need� 10
DOF.

Solution: Sparsity. Waki et al (2006) noticed computational cost is reduced

significantly when ‘‘correlative sparsity’’ is present in the problem, allowing for a

sparse relaxation instead. Lasserre (2006) proved the sparse relaxations converge

provided the ‘‘sparsity graph’’ is chordal∗

min
uh∈UB

h

∫
Ω

E(x,uh ,∇uh) dx = min
uh∈UB

h

nel∑
e=1

∫
Ωe

E(x,uh ,∇uh) dx = min
|ξj|≤B

nel∑
e=1

f e(ξe)

where ξe are the DOF associated to element e, and are referred to as cliques.

∗Actually assuming an implied condition called the ‘‘running intersection property’’ (RIP).
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Example and sparsity graphs

In 1D, consider E = 1
100 |∇u|2+(u + 1)2(u − 2)2 and discretization with

bounded-DOF hat functions, so that UB
h = {uh =

∑N
j=1 ξjϕj(x) | |ξj| ≤ B} and

min
uh∈UB

h

∫
Ω

E dx = min
uh∈UB

h

N+1∑
e=1

∫
Ωe

1
100 |∇uh |2+(uh + 1)2(uh − 2)2 dx

= min
uh∈UB

h

N+1∑
e=1

A1ξ
2
e + A2ξeξe−1 + A3ξ

2
e−1 + B1ξ

4
e + · · ·+ B5ξ

4
e−1︸ ︷︷ ︸

f e(ξe,ξe−1)

Thus, the objective is a sum of polynomials each depending on very few variables.

Among the DOF ξj, two variables are said to be connected if they appear in one

of these polynomials. If each DOF is a node, then this leads to a graph referred to

as a ‘‘sparsity graph’’. In 1D it is trivial:

ξ1 ξ2 ξ3 ξN−1 ξN· · ·
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Example and sparsity graphs

If the sparsity graph is chordal, then the sparse representation theorem mentioned

before holds. A graph is chordal if all cycles of four or more vertices have an edge

that is not part of the cycle that connects two vertices of the cycle.

A clique is a group of variables all connected to each other, and a maximal clique

is a clique that cannot be extended by including one more adjacent vertex. If κ is

the size of the largest maximal clique, then the cost of solving the optimization

problem drops from O(N2ω) to O(κ2ω).

In 1D, the graph is trivially chordal, and κ = 2. In 2D, it is not usually chordal.

However, it is always possible to add redundant connectivities to satisfy chordality

at the cost of increasing κ.
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Summary

Mevissen et al. had already considered similar discretization using finite differences

for constrained problems, but had been unable to prove convergence to

infinite-dimensional problem.

inf
u∈U

∫
Ω

E(x, u,∇u) dx min
|ξj |≤1/h

nel∑
e=1

f e(ξe) (sSPDω)

FD/finite elements sparse relaxation
+compactness

Waki et al. (2006)

+chordality & compactness
Lasserre (2006)

Mevissen et al. (2008)

Γ-convergence
ω → ∞h → 0

Missing: Proof that global finite-dimensional optimizers (POP solutions) converge to

global optimizer of infinite-dimensional problem.

Solution: Γ-convergence (with compactness).
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Γ-convergence

Ψ(u) =

∫
Ω

E(x,u,∇u) dx

Equicoercivity:

A uniform bound Ψ(uh) ≤ C for a sequence uh ∈ UB
h implies ‖uh‖U are also bounded

uniformly.

This follows easily from the growth and coercivity conditions on E.

Existence of recovery sequence:

For every u ∈ U, there exists a sequence {uh}h ⊆ UB
h such that uh → u in ‖ · ‖U and

Ψ(uh)→ Ψ(u).

This follows from finite element approximation properties under the technical condition

pFE > k − 1 + n
p where pFE is the FE order of discretization, k is the global regularity Ck of

the discretization, with n and p coming from W 1,p(Ω) and Ω ⊆ Rn .

Sequential weak lower semicontinuity:

If uh ⇀ u then lim infh Ψ(uh) ≥ Ψ(u).

Follows from ‘‘standard’’ arguments in calculus of variations (Morrey).
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2D Example: two-well problem

min
u∈H1

0 (Ω)

∫
Ω

1
100 |∇u|2 + (u + 1)2(u − 2)2 dx

Fix an h, then iterate over ω until achieving convergence to the finite-dimensional global minimum.

Refine h and repeat.

In all meshes considered ω = 2 was sufficient. No chordality was enforced. The bound used was

B =
√

2/h. At least two possible local minima, only one global.
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2D Example: Swift-Hohenberg

min
u∈H2

0 (Ω)

∫
Ω

(∆u + u)2 − 3
10u2 − 6

5u3 + 1
2u4 dx Ω = [−12,12]× [−6,6]

Solution space is very rich: gradient descent from random initial conditions yielded a list of local

solutions.

No chordality was enforced. Computations for ω > 2 were too expensive.

Lesson: Always try to converge in ω first. If bound B = 3
h is too large (thus needing higher ω),

choose a fixed bound instead.
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Extensions

Find (global) minimizer of integral functional

inf
u∈U

N (u,v)=0 ∀v∈V

∫
Ω

E(x,u,∇u) dx

so that the optimization is now PDE-constrained: N (u, v) is a PDE enforced

variationally. Extra assumptions needed to ensure existence of solutions.

N (u, v) could be nonlinear. In fact it can be proved in the case it is monotonic.

Note that in this case the definition of connectivity in the sparsity graph is more

complicated as it is dependent on the constraints, which typically implies the

relevant maximal clique size is larger (which increases the cost).

Γ-convergence is now more difficult to establish with the PDE constraints.
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Conclusions

To the authors’ knowledge: First algorithm producing approximations that rigorously

converge to a global optima of nonlinear integral functionals.

Combines finite element methods and polynomial optimization. The latter requires

of compactness, and in theory a technical condition chordality, which does not

appear to be necessary for the method to work in practice.

As long as the solution has ‘‘converged’’ in ω, it can be used as an initial guess for

a Newton solver that is closer to the global optimum.

Numerous future applications where global optimality (as opposed to local) is

relevant.

Preprint coming soon.

Thank you!
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