Regularization of rough linear functionals & Adaptivity

Felipe Millar^a, Ignacio Muga^a, Sergio Rojas^a & Kris Van der Zee^b

^a IMA, Pontificia Universidad Católica de Valparaíso, Chile.
^b School of Mathematical Sciences, The University of Nottingham, UK.

October 5-7, 2022, @MINRES/LS-5, Santiago, Chile

Outline

Motivation (PDEs with rough input data)

Projection in dual norms

Numerical results

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Motivation

(PDEs with rough input data)

Motivation

Consider your favorite well-posed variational formulation of a PDE ...

 $\begin{cases} \text{Find } u \in \mathbb{U} \text{ such that:} \\ b(u, v) = \ell(v), \quad \forall v \in \mathbb{V}. \end{cases}$

R. ARAYA, E. BEHRENS, R. RODRÍGUEZ. A posteriori error estimates for elliptic problems with Dirac delta source terms. NUMER. MATH. (2006) 105:193–216.

J.P. AGNELLI, E.M. GARAU, P. MORIN. A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: MATH. MODEL. NUMER. ANAL. (2014) 48:1557–1581.

Motivation

Consider your favorite well-posed variational formulation of a PDE ...

- R. ARAYA, E. BEHRENS, R. RODRÍGUEZ. A posteriori error estimates for elliptic problems with Dirac delta source terms. NUMER. MATH. (2006) 105:193-216.
- J.P. AGNELLI, E.M. GARAU, P. MORIN. A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: MATH. MODEL. NUMER. ANAL. (2014) 48:1557–1581.

Other examples of rough linear functionals

Singular functions:
$$\ell(v) = \int_{\Omega} f v \dots$$
 with a singular f

• Action over the derivatives:
$$\ell(v) = \int_{\Omega} \vec{F} \cdot \nabla v$$
.
 $(\vec{F} \text{ could be singular as well!})$

• Point sources:
$$\ell(\mathbf{v}) = \langle \delta_{\mathbf{x}_0}, \mathbf{v} \rangle = \mathbf{v}(\mathbf{x}_0).$$

• Line sources:
$$\ell(v) = \int_C \varphi v$$
 where C is a contour.

Surface sources:
$$\ell(v) = \int_{S} \psi v$$
 where *S* is a surface.

f .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Regularization idea:

Find a regularized RHS $\ell_H \approx \ell$ such that $\|\ell - \ell_H\|_{V^*}$ is controlled.

• Using ℓ_H we define the regularized problem:

 $\begin{cases} \text{Find } u_H \in \mathbb{U} \text{ such that:} \\ b(u_H, v) = \ell_H(v), \quad \forall v \in \mathbb{V}. \end{cases}$

The regularized problem can be approached numerically using AFEM:

 $\begin{cases} \text{Find } u_h \in \mathbb{U}_h \text{ such that:} \\ b(u_h, v_h) = \ell_H(v_h), \quad \forall v_h \in \mathbb{V}_h. \end{cases}$

Error estimation:

2-step adaptive algorithm:

- Set initial mesh \mathcal{T}_0 and tolerance $\varepsilon > 0$.
- $\blacktriangleright [\mathcal{T}_{H}, \ell_{H}] = \mathsf{RHS}(\mathcal{T}_{0}, \ell, \gamma \varepsilon/2)$
- $\blacktriangleright [\mathcal{T}_h, u_h] = \mathsf{PDE}(\mathcal{T}_H, \ell_H, \varepsilon/2)$

$$\|u - u_h\|_{\mathbb{U}} \leq \frac{1}{\gamma} \underbrace{\|\ell - \ell_H\|_{\mathbb{V}^*}}_{\text{regularization}} + \underbrace{\|u_H - u_h\|_{\mathbb{U}}}_{\text{discretization}} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Desirable features for constructing the regularized RHS ℓ_H :

- Must be adaptively built.
- ▶ If so, we need to localize the error $\|\ell \ell_H\|_{V^*}$ with some indicator.
- We want l_H to be a standard function in some piece-wise polynomial space such that:

$$\langle \ell_H, \mathbf{v}_h \rangle = \int_{\Omega} \ell_H \mathbf{v}_h = \sum_j w_j \, \ell_H(x_j) \mathbf{v}_h(x_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Projection in dual norms

Projection is a minimization problem. Let V_H a piecewise polynomial space defined over an affine simplicial mesh \mathcal{T}_H . Given a rough $\ell \in \mathbb{V}^*$, we aim to find $\ell_H \in V_H$ such that:

$$\ell_{H} = \underset{g_{H} \in V_{H}}{\operatorname{argmin}} \|\ell - g_{H}\|_{\mathbb{V}^{*}}$$
(Min)

where

$$\|\cdot\|_{\mathbb{V}^*} := \sup_{\mathbf{v}\in\mathbb{V}}rac{\langle\,\cdot\,,\mathbf{v}
angle_{\mathbb{V}^*,\mathbb{V}}}{\|\mathbf{v}\|_{\mathbb{V}}}$$

Fortunately, (Min) is equivalent to the mixed (saddle point) formulation:

$$\left\{ \begin{array}{rcl} {\sf Find}\;(r,\ell_{H})\in\mathbb{V}\times V_{H} & {\sf such that:} \\ \\ \left\langle J_{\mathbb{V}}(r),v\right\rangle_{\mathbb{V}^{*},\mathbb{V}}+\int_{\Omega}\ell_{H}\,v & =\ell(v) & \forall v\in\mathbb{V} \\ \\ \\ \int_{\Omega}g_{H}\,r & =0 & \forall g_{H}\in V_{H} \end{array} \right.$$

In particular, $\|r\|_{\mathbb{V}}^{q-1} = \|J_{\mathbb{V}}(r)\|_{\mathbb{V}^*} = \|\ell - \ell_H\|_{\mathbb{V}^*}$ (loc. error representative).

Discrete dual norm projection

Recall the mixed (saddle point) formulation:

$$\begin{cases} \quad \mathsf{Find} \ (r,\ell_H) \in \mathbb{V} \times V_H \quad \text{such that:} \\ \\ \left\langle J_{\mathbb{V}}(r), v \right\rangle_{\mathbb{V}^*,\mathbb{V}} + \int_{\Omega} \ell_H v &= \ell(v) \qquad \forall v \in \mathbb{V} \\ \\ \\ \int_{\Omega} g_H r &= 0 \qquad \forall g_H \in V_H \end{cases}$$

Given a discrete (conforming) piecewise polynomial space $V_h \subset \mathbb{V}$ defined over an affine simplicial mesh \mathcal{T}_h , we propose to solve:

 $\begin{cases} \text{Find } (r_h, \ell_H) \in V_h \times V_H \quad \text{such that:} \\ \left\langle J_{\mathbb{V}}(r_h), v_h \right\rangle_{\mathbb{V}^*, \mathbb{V}} + \int_{\Omega} \ell_H v_h &= \ell(v_h) \quad \forall v_h \in V_h \\ \int_{\Omega} g_H r_h &= 0 \quad \forall g_H \in V_H \end{cases}$

Questions:

- 1. Is this fully-discrete formulation well-posed and stable?
- 2. How good is this new approximation ℓ_H ?
- 3. Is this new ℓ_H a minimizer in some sense?
- 4. Can we use $||\mathbf{r}_h||_{\mathbb{V}}$ as an error indicator for adaptivity?

Under Fortin compatibility condition: There exists a continuous operator $\Pi : \mathbb{V} \to V_h$ such that:

 $\int_{\Omega} g_H \, \Pi v = \int_{\Omega} g_H \, v \qquad \forall v \in V_h, \ \forall g_H \in V_H$ $\| \Pi v \|_{\mathbb{V}} \leq C_{\Pi} \| v \|_{\mathbb{V}}, \qquad \forall v \in \mathbb{V}, \ \text{ with mesh-independent } C_{\Pi} > 0$

Example of compatible pairs V_H/V_h :

- ▶ $\mathbb{P}_0/(\mathbb{P}_1 + \text{bubbles})$ is a compatible pair discretizing $W^{-1,\rho}(\Omega)/W^{1,q}_0(\Omega)$.
- $\mathbb{P}_1/\mathbb{P}_2$ is a compatible pair discretizing $W^{-1,p}(\Omega)/W_0^{1,q}(\Omega)$.
- F. MILLAR, I. MUGA, S. R. & K.G. VAN DER ZEE. Projection in negative norms and the regularization of rough linear functionals. NUMERISCHE MATHEMATIK (2022) 150:1087–1121.

Fortin compatibility implies ...

1. Is this discrete formulation well-posed and stable? **YES!**

 $\|r_h\|_{\mathbb{V}} \leq \|\ell\|_{\mathbb{V}^*} \quad \text{and} \quad \|\ell_H\|_{\mathbb{V}^*} \lesssim C_{\Pi} \|\ell\|_{\mathbb{V}^*}$

2. How good is this new approximation? It's quasi-optimal!

$$\|\ell - \ell_H\|_{\mathbb{V}^*} \leq (1 + 2C_{\Pi}) \inf_{g_H \in V_H} \|\ell - g_H\|_{\mathbb{V}^*}$$

Is this new ℓ_H a minimizer in some sense?
 Indeed, it's the minimizer in the discrete dual norm:

$$\sup_{\mathbf{v}_h \in \mathbf{V}_h} \frac{\langle \ell - \ell_H, \mathbf{v}_h \rangle_{\mathbb{V}^*, \mathbb{V}}}{\|\mathbf{v}_h\|_{\mathbb{V}}} \leq \sup_{\mathbf{v}_h \in V_h} \frac{\langle \ell - g_H, \mathbf{v}_h \rangle_{\mathbb{V}^*, \mathbb{V}}}{\|\mathbf{v}_h\|_{\mathbb{V}}} \qquad \forall g_H \in V_H$$

4. Can we use $||r_h||_{\mathbb{V}}$ as an error indicator for adaptivity? **YES!**

$$\|r_h\|_{\mathbb{V}}^{q-1} \leq \|\ell - \ell_H\|_{\mathbb{V}^*} \leq C_{\Pi} \|r_h\|_{\mathbb{V}}^{q-1} + \underbrace{\sup_{v \in \mathbb{V}} \frac{\langle \ell, v - \Pi v \rangle_{\mathbb{V}^*, \mathbb{V}}}{\|v\|_{\mathbb{V}}}}_{\operatorname{osc}(\ell)}$$

Numerical Results

 $W^{-1,p}$ projection of Dirac delta in 1D ($\mathbb{P}_1/\mathbb{P}_2$ compatible pair)

€ 990

Elliptic ODE with projected Dirac delta source (p = 2, $\mathbb{P}_0/\mathbb{P}_2$ C.P.)

2D Dirac delta projection in $W^{-1,p}$ ($\mathbb{P}_1/\mathbb{P}_2$ C.P.)

Sequence of mesh refinements for p = 1.2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Elliptic PDE on a L-shape domain with Dirac source ($\mathbb{U}_h = \mathbb{P}_1$)

$$u(x) = \frac{1}{2\pi} \log \left(\|x - x_0\| \right) + \|x\|^{\frac{2}{3}} \sin \left(\frac{2}{3} (\pi - \theta_x) \right)$$

・ロト・日本・ヨト・ヨー シック

Elliptic PDE on a L-shape domain with Dirac source $(\mathbb{U}_h = \mathbb{P}_1)$

 $\begin{cases} -\Delta u = \delta_{x_0} + f \\ +BCs \end{cases} \text{ such that the exact solution is:} \\ u(x) = \frac{1}{2\pi} \log \left(\|x - x_0\| \right) + \|x\|^{\frac{2}{3}} \sin \left(\frac{2}{3} (\pi - \theta_x) \right) \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Line source in 2D ($\mathbb{P}_0/\mathbb{P}_1$ + bubbles C.P.)

Future directions

- Rougher RHS (e.g., derivatives of Dirac delta)
- ► Non-conforming FEM.

Main reference:

F. Millar, I. Muga, S. Rojas & K.G. Van der Zee.

Projection in negative norms and the regularization of rough linear functionals. NUMERISCHE MATHEMATIK (2022) 150:1087–1121.

THX !!!

- ANID Fondecyt No 3210009
- European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS).

sergio.rojas.h@pucv.cl