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Motivational Examples



Motivating example 1: incorporation of data.
Let λ ∈ (0, 1) and consider the differential equation:

−u′′ = δλ in (0, 1)
u(0) = u′(1) = 0
data: u(x0)


Find u ∈ H1

(0(0, 1) s.t.∫ 1

0

u′v ′ = v(λ) ∀v ∈ H1
(0(0, 1)

0 QoI 1
0

0.4

Exact

Galerkin

QoI

Trial space Uh = span{x}
What if we use a parametrized test function

v(x) = θ1x + e−θ2(1− e−θ1x) ?

Relative error
(θ2 is fixed)

- Is the test function v trainable to reduce the error in known data ?
- How to come up with a practical family of trainable test functions?
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Motivating example 1: incorporation of data.

How to obtain the red solution?

IDEAS:

▶ Incorporate a neural-network ξ as a control
variable into the discrete weak-formulation.

▶ Define the discrete solution uh,ξ ∈ Uh

obtained using this neurally-controlled
weak-form.

▶ Assuming you have a set of reliable data
{qi}Nd

i=1 ⊂ R (e.g., known quantities of
interest of the exact solution), then try to
minimize the following cost functional:

J(uh,ξ) :=

Nd∑
i=1

1

2
|qi (uh,ξ)− qi |2 −→ min,

where qi : U → R are QoI functionals.
(supervised learning)
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Motivating example 2: incorporation of qualitative attributes.

Same idea:

▶ Incorporate a neural-network ξ as a control
variable into the discrete weak-formulation.

▶ Define the discrete solution uh,ξ ∈ Uh

obtained using this neurally-controlled
weak-form.

▶ Try to minimize the total variation:

J(uh,ξ) := ∥u′
h,ξ∥L1 −→ min

(unsupervised learning)

Q: How to intervene a discrete formulation in order to incorporate a control
parameter?
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Discrete formulations

▶ Uh ⊂ U (Hilbert trial space for discrete solutions)

▶ V̂ ⊆ V (Hilbert test space, discrete or not, with inner-product (·, ·)V)
▶ b(·, ·) : U× V → R (continuous bilinear form of the PDE)

▶ f ∈ V∗ RHS of the PDE b(u, v) = f (v) ∀v ∈ V
▶ B : U → V∗ (induced operator) Bw = b(w , ·) ∈ V∗, w ∈ U

The parent: (Residual minimization form)

uh = argmin
wh∈Uh

∥f − Bwh∥V̂∗ = argmin
wh∈Uh

(
sup
v∈V̂

|f (v)− b(wh, v)|
∥v∥V

)

The offspring: (Mixed/saddle-point form)(
r , v
)
V + b(uh, v) = f (v), ∀v ∈ V̂

b(wh, r) = 0, ∀wh ∈ Uh

The holy spirit: (Petrov-Galerkin w/optimal test functions form)

b(uh, vh) = f (vh) , ∀vh ∈ Vh := R−1

V̂ BUh



Theoretical formalism



Discrete state problem and associated cost functional

Functional spaces and operators:

▶ ξ ∈ X (Hilbert space for the control variable)

▶ Uh ⊂ U (Hilbert trial space for discrete solutions)

▶ V̂ ⊆ V (Hilbert test space, discrete or not)

▶ a(ξ; ·, ·) : V× V → R (controlled equivalent inner-product)

▶ b(·, ·) : U× V → R (variational form of the PDE)

▶ Z (space for observations) and Q : U → Z (observation operator)

State problem: Given ξ ∈ X & f ∈ V∗, find uh,ξ ∈ Uh (and rξ ∈ V̂) s.t.

a(ξ; rξ, v) + b(uh,ξ, v) = f (v), ∀v ∈ V̂,
b(wh, rξ) = 0, ∀wh ∈ Uh ,

Reduced cost functional: Given desirable observations or attributes zo ∈ Z,

j(ξ) := j1(ξ) + αj2(ξ) :=
1

2
∥Q(uh,ξ)− zo∥2Z +

α

2
∥ξ∥2X
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Neural quasi-minimization

▶ The idea is to minimize j(·) over a computable subset Mn ⊂ X

▶ Mn ⊂ X will be the manifold of all the realizations functions for a fixed
neural-network architecture parametrized by n

▶ Warning: Mn ⊂ X may not be convex and closed in the topology of X !!

▶ The cost functional j(·) may have an infimum when restricted to Mn, but
not a minimizer in Mn

Definition (Quasi-minimization concepts; Shin, Zhang & Karniadakis)

Let {Mn} be a sequence of subsets of X and {δn} → 0+. A quasi-minimizing
sequence {ξ̄n} ⊂ X consists of quasi-minimizers ξ̄n ∈ Mn satisfying:

j(ξ̄n) ≤ inf
ξn∈Mn

j(ξn) +
δn
2

(1)

The problem to find ξ̄n ∈ Mn satisfying (1) will be our quasi-minimizing
control problem.
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Main result 1 (independent interest)

Theorem
Assume that j : X → R is Gâteaux differentiable, with derivative j ′ : X → X∗

satisfying for all ξ, η ∈ X:
▶
〈
j ′(ξ)− j ′(η), ξ − η

〉
X∗,X ≥ γ∥ξ − η∥2X (strong convexity of j)

▶ ∥j ′(ξ)− j ′(η)∥X∗ ≤ L∥ξ − η∥X (Lipschitz continuity of j ′)

Then the following hold true

1. j(·) has a unique minimizer ξ̄ ∈ X, which satisfies j ′(ξ̄) = 0 in X∗

2. For any Mn ⊂ X and δn > 0, j(·) has a quasi-minimizer ξ̄n ∈ Mn.

3. Any quasi-minimizer satisfies the following quasi-optimal error estimate:

∥ξ̄ − ξ̄n∥2X ≤ L

γ
inf

ξn∈Mn

∥ξ̄ − ξn∥2X +
δn
γ

Example 1 (PINNs): j(ξ) = 1
2
∥f − Bξ∥2L

Example 2 (Deep Ritz method): j(ξ) = 1
2
b(ξ, ξ)− f (ξ)
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Main result 2

Going back to our original problem ...

▶ Let j(ξ) := j1(ξ) + αj2(ξ) :=
1

2
∥Q(uh,ξ)− zo∥2Z +

α

2
∥ξ∥2X

▶ Let Sh : X → Uh be the control-to-state operator, i.e., Sh(ξ) = uh,ξ

Theorem
Assume Sh(·) differentiable, Sh(·) and S ′

h(·) uniformly bounded on X, and S ′
h(·)

Lipschitz continuous. Then

1. j1, j2, j : X → R are Gâteaux differentiable with j ′1, j
′
2, j

′ : X → X∗ Lipschitz
continuous.

2. For α > 0 large enough (or j1 convex), j(·) is strongly convex.

Notice that in our case ...

A(ξ)r + BSh(ξ) = f
B∗r = 0

A(ξ)r ′(ξ)η + BS ′
h(ξ)η = −[A′(ξ)η]r(ξ)

B∗r ′(ξ)η = 0

Hence, suitable conditions on A(·) will imply desired conditions on Sh(·), viz.,
A(·) Gateaux differentiable and uniformly bounded from above and below; A′(·)
Lipschitz continuous and uniformly bounded.



Main result 2

Going back to our original problem ...

▶ Let j(ξ) := j1(ξ) + αj2(ξ) :=
1

2
∥Q(uh,ξ)− zo∥2Z +

α

2
∥ξ∥2X

▶ Let Sh : X → Uh be the control-to-state operator, i.e., Sh(ξ) = uh,ξ

Theorem
Assume Sh(·) differentiable, Sh(·) and S ′

h(·) uniformly bounded on X, and S ′
h(·)

Lipschitz continuous. Then

1. j1, j2, j : X → R are Gâteaux differentiable with j ′1, j
′
2, j

′ : X → X∗ Lipschitz
continuous.

2. For α > 0 large enough (or j1 convex), j(·) is strongly convex.

Notice that in our case ...

A(ξ)r + BSh(ξ) = f
B∗r = 0

A(ξ)r ′(ξ)η + BS ′
h(ξ)η = −[A′(ξ)η]r(ξ)

B∗r ′(ξ)η = 0

Hence, suitable conditions on A(·) will imply desired conditions on Sh(·), viz.,
A(·) Gateaux differentiable and uniformly bounded from above and below; A′(·)
Lipschitz continuous and uniformly bounded.



Main result 2

Going back to our original problem ...

▶ Let j(ξ) := j1(ξ) + αj2(ξ) :=
1

2
∥Q(uh,ξ)− zo∥2Z +

α

2
∥ξ∥2X

▶ Let Sh : X → Uh be the control-to-state operator, i.e., Sh(ξ) = uh,ξ

Theorem
Assume Sh(·) differentiable, Sh(·) and S ′

h(·) uniformly bounded on X, and S ′
h(·)

Lipschitz continuous. Then

1. j1, j2, j : X → R are Gâteaux differentiable with j ′1, j
′
2, j

′ : X → X∗ Lipschitz
continuous.

2. For α > 0 large enough (or j1 convex), j(·) is strongly convex.

Notice that in our case ...

A(ξ)r + BSh(ξ) = f
B∗r = 0

A(ξ)r ′(ξ)η + BS ′
h(ξ)η = −[A′(ξ)η]r(ξ)

B∗r ′(ξ)η = 0

Hence, suitable conditions on A(·) will imply desired conditions on Sh(·), viz.,
A(·) Gateaux differentiable and uniformly bounded from above and below; A′(·)
Lipschitz continuous and uniformly bounded.



Numerical Experiments



Point value control for weighted least-squares

Problem:

{
u′ + λu = λ in (0, 1)

u(0) = 0
with λ >> 1.

Variational formulation:

▶ Trial: Uh ⊂ H1
(0(0, 1) conforming piecewise linear on uniform mesh (size h)

▶ Test: V̂ = L2(0, 1)

▶ (Bu, v)L2 :=
∫ 1

0
(u′ + λu)v = λ

∫ 1

0
v =: (f , v)L2

Neurally-controlled discrete formulation:(
r

ω(ξ)
, v

)
L2

+ (Buh,ξ, v)L2 = (f , v)L2 ∀v ∈ V̂

(Bwh, r)L2 = 0 ∀wh ∈ Uh︸ ︷︷ ︸
mixed form

(
ω(ξ)Bwh, f − Buh,ξ

)
L2

= 0

∀wh ∈ Uh︸ ︷︷ ︸
weighted LS form

Cost functional:

j(ξ) :=
1

2
|u(h)− uh,ξ(h)|2 (assume that we know the value of u(h))
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Point value control for weighted least-squares

Weight: ω(ξ(x)) = 1 +
M

1 + exp(−ξ(x))
(1 ≤ ω ≤ 1 +M)

ANN: M8 :=

{
η8(x) =

∑8
j=1 cj ReLU(Wjx + bj)

∣∣∣ cj ,Wj , bj ∈ R
}

Figure: Point value control for weighted least-squares. Minimization of the cost
functional for several values of M (left). Overshoot control of the discrete solutions
(right).



Total variation control for weighted discrete-dual residual minimization

Problem:

{
−u′′ + λu = λ in (0, 1)

u(0) = u′(1) = 0
with λ >> 1.

Variational formulation:

▶ Trial: Uh ⊂ H1
(0(0, 1) conforming piecewise linear on uniform mesh (size h)

▶ Test: V̂ ⊂ H1
(0(0, 1) conforming piecewise quadratics on same mesh

▶ b(u, v) :=
∫ 1

0
(u′v ′ + λuv) = λ

∫ 1

0
v =: f (v)

Neurally-controlled discrete formulation:(
ω(ξ)r ′,v ′)

L2
+ b(uh,ξ, v) = f (v) ∀v ∈ V̂

b(wh, r) = 0 ∀wh ∈ Uh

Cost functional: j(ξ) := ∥u′
h,ξ∥L1 (total variation)
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Total variation control for weighted discrete-dual residual minimization



L1-based control for overconstrained advection-reaction (Guermond)

Problem:

{
β⃗ · ∇u + u = 1 in (0, 1)2

u(0, x2) = 0
with β⃗ = (1, 0).

Overconstrained least-squares formulation:
FEM space: Uh ⊂ {w ∈ H1 : w(0, x2) = w(1, x2) = 0} overconstrained
piecewise linear on uniform mesh (size h)

uh ∈ Uh s.t.

∫
Ω

(1− uh − β⃗ · ∇uh)(β⃗ · ∇wh + wh) = 0, ∀wh ∈ Uh

Exact v/s discrete solution:
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L1-based control for overconstrained advection-reaction (Guermond)

Overconstrained weighted least-squares formulation:
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Ω
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Cost functional: j(ξ) := ∥1− uh,ξ − β⃗ · ∇uh,ξ∥L1 (mimicking L1 MinRes)

Exact v/s discrete solution:
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Numerical experiments: 1D diffusion with one QoI

−u′′ = δλ in (0, 1), u(0) = u′(1) = 0

Uh = span{x} QoI = 0.6

ANN(x ; θ) =
5∑

j=1

θj3σ(θj1x + θj2)

σ is the logistic sigmoid function.

(a) Trained weight (b) Optimal test function (c) Relative errors in QoI



Numerical experiments: 1D advection with one QoI

{
u′ = (x − λ)1[λ,1](x)
u(0) = 0

QoI=0.9

ANN(x ; θ) =
5∑

j=1

θj3σ(θj1x + θj2) dimVh = 128

Exact v/s Discrete solutions (λ = 0.19)

(a) One element (b) Two elements (c) Three elements



Numerical experiments: 1D advection with one QoI

{
u′ = (x − λ)1[λ,1](x)
u(0) = 0

QoI=0.9 λ ∈ [0, 1]

ANN(x ; θ) =
5∑

j=1

θj3σ(θj1x + θj2) dimVh = 128

Absolute error in QoI

(a) One DoF (b) Two DoF (c) Three DoF



Numerical experiments: 1D advection with multiple QoIs

(a) Three elements (b) Four elements (c) Five elements

(a) Three DoF (b) Four DoF (c) Five DoF



Numerical experiments: 2D diffusion with one QoI

{
−∆uλ = fλ in Ω = [0, 1]2

uλ = 0 over ∂Ω

∣∣∣∣ fλ is chosen such that the exact solution is:
uλ(x) = sin(πx1) sin(λπx1) sin(πx2) sin(λπx2)

QoI: q(u) =
1

|Ω0|

∫
Ω0

u dx

(a) One DoF (b) Five DoF (c) Eight DoF



Numerical experiments: 2D diffusion with one QoI

ANN(x1, x2; θ) =
5∑

j=1

θj4σ(θj1x1 + θj2x2 + θj3) dimVh = 1024

Absolute error in QoI

(a) One DoF (b) Five DoF (c) Eight DoF



Numerical experiments: parameter λ on the left hand side


−u′′ + λu = δx0 in (0, 1)
u(0) = u′(1) = 0
QoI=0.6
x0 = 0.7

Exact v/s Discrete solutions

(a) λ = 1; rel. err. = 0.00% (b) λ = 5.5; rel. err. = 0.34% (c) λ = 10; rel. err. = 0.35%



Numerical experiments: two parameters on the left hand side


−α2u′′ + β2u = δx0 in (0, 1)
u(0) = u′(1) = 0
QoI=0.6
x0 = 0.7



Numerical experiments: Diffusion–Reaction unsupervised training

{
−u′′ + λu = λ in (0, 1)
u(0) = u′(1) = 0

J(ω) = ∥u′
h,λ,ω∥L1

(a) Exact v/s discrete solutions (b) Trained weight
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