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Extension of practical DPG to L%(q > 2)

Let ¢ > 2 and ¢* = ¢/(q — 1). We denote the trial and test spaces by U? and
V@) b U@ x V@) s bilinear and £ € V7).

CONTINUOUS PROBLEM: Find u € U? such that for all v € V(")
b(u, v) = £(v). B9y =

Finite-dimensional subspace U" € U of dimension Nj,.
DISCRETE PROBLEM: Find u;, € U" such that
b(un, o) = £(0n), (BT up) |y = Elpn

for all b, € V", where V" ¢ V(@) is of dimension N, and guarantees stability.
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Extension of practical DPG to L%(q > 2)

(a*) .
Bounded domain = U@ — U@, V@) L p(@)
Enriched test space of dim N,. > N, is chosen s.t. V" < V@ | hence

yr & v

Let Ry : V" — V"’ be the Riesz map of V" with the V(2) inner product.
Practical trial-to-test mapping T” : U — V" defined by

T :==Ryro0iT o )T oBlad)
o, =T w, eV VP = (03,00 )y = b(oy,00") Voo" € V"
Thus, we define the test space V" by

V=T (U c V" cVv® ¢yl
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Assumptions to prove stability

e The linear operator B@a™) Y@ — V@)’ associated to the bilinear
form b is continuous, i.e., there is a constant M) > 0 such that

« b(u, v
B9 wlyery = sup L0

< MOl , Vueu?.
vevi@® 0llyas

e There exists a constant v > 0 satisfying
inf  sup __lbwo)] =7
wet@ yeyia) W@ 10y

e There exists a Fortin operator Hfg*) V@) V" with the following two

properties
{ b(up, v — H;?*)n) =0 Yo € V@) w, e U"  (orthogonality),
I ollpiay < CE 7 ollycany Vo e V) (continuity).

In conjunction with some inverse estimates for the enriched test space, and
some usual tricks for conforming spaces, we can show stability for the discrete

problem.
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Finite elastostatics

Elastic body: 3 a response function X : Q x My — M s.t.
P(X) = X(X,F(X))

Hyperelasticity: there exists a stored energy density W:Qx My — Rs.t.
[K(X,F)] (X, F).

”_BFJ

Hyperelastlaty + MFI + Isotropy: IW : Q x (0,00) — R satisfying
W( F) = W(-, A1, A2, As).

Behavior at large strain W(-, F) = +ooas detF — 01, F € M.
Coerciveness W(X,F) > o (|F|” + |CofF|? + | det F|") + 3

Polyconvexity: 3 a convex function W : Q x M x M x (0, 4oc0) s.t. VF € M,
W(,F) = W(-,F, CofF, det F).

Elasticity tensor: A(F) = aF oF (F) Airjg = Ajir.
Strong ellipticity (Legendre-Hadamard): q;q;[A(F)]:r;7q;95 > 0
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Nonlinear problem

From the first principles and the definitions above we get:

General form

—DivP =pof, in Q,
P-X(I+D) =0 in
D - Gradu =0 in
U = Upe on Iy,

Pn = tbc on Ft.

Reduced form
—DivK(I+ Gradu) =pof, in Q,

u = Upe on Fu,
K(I+ Gradu)n = tpe on I

Energy minimization principle
T(v) = / W(X,I+ Grad v(X)) dX — / pofo-vdX — [ toe-vdA.
Q Q Ty

; ;
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Theorem (Global existence of minimizers®)

Let Q C R® be a bounded domain, and let W:Qx M have the properties:
(a) Polyconvexity
(b) Behavior as det F — 07T
(c) Coerciveness

Let boundary T' = 9Q) be partitioned into 'y, and T'y with meas(T'y) > 0. Let
e : Tu — R3 be a measurable function such that the set of kinematically
admissible motions:

P = {1p ¢ WhP(Q;R3) :  Cof(Grad ) € LI(M), det(Gradep) € L™(Q),

P = @y, a.e. on'y, detGrad >0 a.e. in Q}

is non-empty. Let § and o be selected s.t., for fo € L%(;R®) and t. € L7 (T4;R3),
LW @R) 3% = 1) = [ pofo- bt [ teow
t

is continuous. Then, there exists ¢ € ® minimizing the total energy J.

1Ciarlet, P. (1993). Mathematical elasticity. Vol. 1. Three-dimensional elasticity. NorthHolland.
| |
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Local existence and uniqueness: Inverse Function Theorem
Assumptions
o The material is hyperelastic and the response function X is smooth in X and F.
e The boundary 9Q is C*.
e I', is nonempty and equals one or more connected components of 9.
o : Q — R3 is a regular deformation (C?) and A at ¢, is strongly elliptic.
o The linearized equations at ¢ have a unique solution.
Let X = W*P(;R3) and
9 = Ws—2P(Q;R3) x Ws—1/P:p(I',; R3) x Ws—1-1/p:2(D;; R3). Let € C X be the
set of regular deformations. Define § : € — Q) by

F(p) = ( — DivX(Grad o), ¢|r,, , (X(Grad <p)n)|pa).

Theorem (Local existence and uniqueness of solutions 2)

Make the assumptions (i)-(v) above and assume that s > 3/p+1 (1 <p < o). Then
there are neighborhoods il of ¢ in X and 3 of §(¢q), such that §: 4 — 3 is
one-to-one and onto

2Marsden, J. E. and Hughes, T. J. (1994). Mathematical foundations of elasticity. Dover.
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Linearization
Linearized general form

The group variable is up = (u, P,D) and the linearized system, that solves for
dug = (du, 6P, D), reads

—DivéP = pof,+ Div P in Q,
SP—A(I+D*y:sD =-PM4xa+D*) in Q,
| — | S —
Al¥] %K [k]
6D — Graddu = —D" 4 Grad u!® in ,
U = Upe — ul¥l on Iy,
Pn =ty — (P[k])n on IYy.

Linearized reduced form
This linearized system seeks for the increment du satisfying

— Div (A(I + Gradul™) : Grad 5u) = pofo + DivK(I + Gradu®) in Q,

ou = upe — ul® on Ty,
(A(I + Grad u*!) : Grad 5u) n =ty — K1+ CGradu*)n on T.

;
USING POLYDPG TO SIMULATE NONLINEAR MECHANICS OF ELASTOMERS Jaime Mora Paz




DPG in LY (¢ > 2) Finite elastostatics Formulations Practical application Conclusions
000 0000 oe 0000000 000
: :

Variational formulation for the linearized BVP in L(q > 3)

Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV
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Variational formulation for the linearized BVP in L(q > 3)
Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV
Broken Ultraweak Variational Formulation

(Sup , 601) = (6u,dP,6D , &a,dt)
U x U =L9Q) x Wg;l/q’q(éﬁ;RS) % Wlftl/q’q(aﬁ;]RS)
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Variational formulation for the linearized BVP in L(q > 3)

Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV

Broken Ultraweak Variational Formulation

(Sug , 61) = (6u,dP,8D , u,ot)

U =19(9) x Wi V90T R3) x Wi /99075, R)
o =(v,7,x)

V. =Wha (T,;R3) x W (Div, Tp; R3) x LI (€; M)
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Variational formulation for the linearized BVP in L(q > 3)

Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV

Broken Ultraweak Variational Formulation

(Suo , 68) = (u,6P,6D , 6@, dt)
Up x U =L9(Q) x WL V90T, RS) x Wi /999755 R?)
v = (v,7,X)
V= WLa (75, R3) x W (Div, Tp; R3) x LI (Q; M)
¥ (up,0) = (Su, Divr)7, + (6P, Gradv + x)7;, + (06D, 7 — AFl . x) 7.

;
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Variational formulation for the linearized BVP in L(q > 3)

Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV

Broken Ultraweak Variational Formulation

(dup , 6u1) = (du,dP,éD 6’&,5%)

Up x U =L9(Q) x WL V90T, RS) x Wi /999755 R?)
v
A%

= (v, 7,x) . .
= Wha (Ty; R?) x W (Div, Tp; R?) x LT (Q; M)

by (bup,v) = (du, DivT)7;, + (6P, Gradv + )7, + (6D, 7 — AM . x) 7
blk] (60,0) = —<5t,tr%fadv)a7—h — (511,171‘%';’7’)37‘,1
: :
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Variational formulation for the linearized BVP in L(q > 3)

Find (3uo, &it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV

Broken Ultraweak Variational Formulation

(Sug , 6) = (6u,dP,8D | i, 6t)
Up x U =L9(Q) x WL V90T, RS) x Wi /999755 R?)
o =(v,7,x)
V= WLa (75, R3) x W (Div, Tp; R3) x LI (Q; M)
by (bup,v) = (du, DivT)7;, + (6P, Gradv + )7, + (6D, 7 — AM . x) 7
blK] (60,0) = _<6t,tr%fadv)a7—h - (5’0,,171‘?—;;’7’)37‘,1
ol _ _ (DI¥ i[k] Grad _plkl o xlk]
Th (U) = (pOfO ) v)Th ( ) T)Th + ( P trTh 'U>l"t + ( + s X)Th
—(PH, Gradv)7;, — (ultl, Divr)y, + (@M, oPivr)r,
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Variational formulation for the linearized BVP in L(q > 3)

Find (8ug, 8it) € Up x U such that
by (010, 0) + bF (51, 0) = ) (0) o eV

Broken Ultraweak Variational Formulation

(6up , 60) = (6u,dP,6D , ba, ot)
Up x U =L9(Q) x WL V90T, RS) x Wi /999755 R?)
o =(v,7,%)
V= WLa (75, R3) x W (Div, Tp; R3) x LI (Q; M)
¥ (ug,0) = (Su, Divr)7, + (6P, Gradv + x)7;, + (6D, 7 — AlKl - x) 7.
blK] (60,0) = _<5i,tr%iadv>a7*h - (511,171‘%1"7’)37‘,1
ol _ _ (DI¥ i[k] Grad _plkl o xlk]
Th (U) = (p0f07 v)Th ( ) T)Th + ( P trTh 'U>1"t + ( + s X)Th
—(Pl¥l | Grad )T, — (ul*! | Div )75 + (@lkl tr7D—;L"T>ru

Well-posedness. Assume smooth boundary, I'y, = 92 and that A is strongly elliptic
with C9 entries. Check conditions on bl¥](§ii, ) for broken test spaces.
PRIMAL = STRONG = ULTRAWEAK = BROKEN PRIMAL, BROKEN UW

; ;
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Problem setup

Length unit: mm. Stress unit: MPa. Domain is the unit cube with 15 spherical voids.

w=(0,0,-1)T

Zero traction on
lateral faces

Zero traction on inner

“ spherical boundaries
L e
Mo N
WAL A2, A3) = D — (AT +AT +AT) Z L1(A2A3)% + (A3 A1) % +(A1A2) [ +GV (A A2
i=1 " j=1
The volumetric term, with K = 103, is The Ogden model parameters are?;

M =2, a1 =13, v1 =0,006, az =5, 72 =1,2,
N=1, by =2, §1 =0,01.
3Marckmann, G. and Verron, E. (2006). Rubber chemistry and technology, 79(5):835-858.
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Implementation details

Let F have the following singular value decomposition (SVD)

F=1+D=1I+Gradu
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Implementation details

Let F have the following singular value decomposition (SVD)

F:I+D:I—i—Gra,du:éAQT:Zaa)\aq-;
«@
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Implementation details

Let F have the following singular value decomposition (SVD)

F=I+D=1I+Gradu=QAQ" = an)\aqa.

We use A to eval energy W, stress and elasticity tensor

X(F) = QK(A)Q". ko = g;/v (A1, A2, A3),

fora=1,2,3.

Aijg(F)=FkF;Crixp(FTF) + [S(FTF)] 1,8

CrikL = ZZ (?ia(qu)z (da)s(ap)k(ap)L

5 3 (222 ()i (@) (e (@)1 + (@) r(as). (@) x aa)].
2 07h N8 " Ca

; ;
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Implementation details

Homogeneous numerical integration for polyhedra: Let K be a polyhedron with faces
{F;} g RN — R be homogeneous of degree k.

/g(m) de =

% F; CBK

N—I—k bj:nj-:cjyo.

Consider term (6D, 7 — AlF] X)T;,- Although ul*l and v are polynomials, Al¥ is not.

This works perfectly for lowest order ({A} are constant, therefore Al*l is constant.).
Nonlinear Solver: Modif. Newton with load stepping. We assemble with OpenMP,
factorize and solve with MUMPS. Line search and BFGS updates are optional.

Line search

wlkt1 = glklgy 4+ yl+l
Step length s[¥] is determined by finding a zero of the scalar function
GFl(s) = 6d - I(s, o).
BFGS (Broyden, Fletcher, Goldfarb and Shanno) updates

BEED T = 1w TBEL ) 1+ wT).
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Results
Methods to solve linearized problem:
o Bubnov-Galerkin: duy, v, € (P2(Th))3.
e Ultraweak (UW) DPG, p-enrichment with fixed dp = 2.
e PolyDPG with continuous traces, variable p-enrichment.
W = (PN (TR)° x (P (T))® x (P (Th) > x (PE(OT3))® x (PR~ (0Th))*

Sup Sup, 5Py, 5Dy, say, Sty

V7T = (PET ()% x (RTPYP(Th))? x L (92; M)
N——

~~
o P T X
: :
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Results
Methods to solve linearized problem:
o Bubnov-Galerkin: duy, v, € (P2(Th))3.
e Ultraweak (UW) DPG, p-enrichment with fixed dp = 2.
e PolyDPG with continuous traces, variable p-enrichment.
W = (PN (TR)° x (P (T))® x (P (Th) > x (PE(OT3))® x (PR~ (0Th))*

Sup Sup, 5Py, 5Dy, say, Sty

V7T = (PET ()% x (RTPYP(Th))? x L (92; M)
N——

~~

o” v” r X

T

Mesh Method » DOF Syst(_em Line Converged L_oad step Final
size search steps size load
7,453 BG 1 6,036 5,784 Yes 10 0.002 2%
7,453 UW DPG 1 353,457 46,359 No 6 0.004 2.4%
(Zé‘;f';’ PolyDPG 1 | 106854 21,369 No 26 0.02 52%

USING POLYDPG TO SIMULATE NONLINEAR MECHANICS OF ELASTOMERS Jaime Mora Paz




DPGin LY (¢ > 2) Finite elastostatics Formulations Practical application Conclusions
000 0000 00 0000800 000

Results with agglomerated elements

REFERENCE CONFIGURATION WIREFRAME: p=1, load no. 0 DEFORMED CONFIGURATION WIREFRAME: p=1, load no. §

i
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Results with agglomerated elements

‘Trace i - componen 1 - FE SOLUTION: p-1, load no. 26 Trace & - companent 2 - FE SOLUTION: p~1, load mo. 26 Trace @ - component; 3 - FE SOLUTION: p-1, load no. 26

Trace § - component 3 - FE SOLUTION: p=1, loar no. 26 035

Solution plots at the maximum deformation: (top) displacement trace y,; (bottom)
traction t .
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Results with agglomerated elements

0.999985

Jacobian determinant - FE SOLUTION: p=1, load no. 26

0.99998

0.999975

0.99997

0.999965

0.99996

0.999955

0.99995

0.999945

0.99994

0.999935

Solution plot of the Jacobian at the maximum deformation (52 % load).
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Conclusions

e We have introduced new formulations and DPG discretizations for
the linearized equations of elastostatics.

e We have studied a practical application of the new discretization.

e We have shown that the new formulation combined with polyhedral
elements can reach larger deformations than other methods.

Ongoing and future work

e Implement other options for the nonlinear solver, especially one that
can exploit the MPI implementation of hp3d to enable the solution
of large nonlinear problems.

e Extend the present work to the simulation of a elastomeric syntactic
foam, by adding glass microballoons to the problem setup.
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THANK YOU FOR YOUR ATTENTION!

USING POLYDPG TO SIMULATE NONLINEAR MECHANICS OF ELASTOMERS Jaime Mora Paz
e




	Practical DPG in Lq (q2)
	Nonlinear elastostatics (hyperelasticity) problem
	Linearization and variational formulations
	Practical application
	Conclusions

