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Plasma Physics s

Plasma physics simulations are vital for fundamental science and for
clean energy (fusion power), among other things.
Applications include:

= Tokamak (and other fusion reactor) design

= Pulsed-power experimental facilities design (“Z-Next")



Sandia

Plasma Physics Regimes s

PIC Viasov MHD

denser plasmas

= Particle-in-Cell (PIC) approximations work well in rarefied regimes,
where there is not too much material to simulate.

= Magnetohydrodynamics (MHD) works well, by contrast, where there is
enough material that a fluid approximation of the plasma is a good
model.

= |n real-world applications, however, there is almost always a transition
region between these regimes — for this, direct discretization of Vlasov is
appropriate.

Of +v-Vf+a-V,f =C(f)



Sandia

Camellia 2.0 Development Effort e
Goals:

= Support for GPU and OpenMP execution (via Kokkos): in progress.
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Goals:

Support for GPU and OpenMP execution (via Kokkos): in progress.

Support for new Intrepid2 bases, including hierarchical and serendipity
bases: complete.

Support for sum-factorized assembly (and more general “smart”
assembly): in progress.

Support for matrix-free execution: aspirational.

Support for orthogonal extrusions in up to 7D: complete for meshing;
tested in up to 5D for assembly and solve.
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Camellia 2.0 Development Effort () =,

Goals:

Support for GPU and OpenMP execution (via Kokkos): in progress.

Support for new Intrepid2 bases, including hierarchical and serendipity
bases: complete.

Support for sum-factorized assembly (and more general “smart”
assembly): in progress.

Support for matrix-free execution: aspirational.

Support for orthogonal extrusions in up to 7D: complete for meshing;
tested in up to 5D for assembly and solve.

Support for representing functions that only vary in specified
dimension(s).
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Camellia: Support for Structured Data () %,

= Camellia aims to be quite general, with support for arbitrary
PDEs on unstructured grids.

= Working to add mechanisms to preserve structure for improved
performance.

= A work in progress: foundation laid for e.g. using Intrepid2’'s sum
factorization, but not yet implemented.

= Two examples: Function and ExtrudedMeshTopology
classes.
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Function Class and Structured Data () e

The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:

®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.
values () method: accepts an object representing the
computational /geometric context (e.g., which cells and points to compute

values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:
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The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:
®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.

values () method: accepts an object representing the

computational /geometric context (e.g., which cells and points to compute
values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

= a version of values () that outputs to an Intrepid2: :Data object
(alongside methods that allow the subclass to specify the structure of
the data)
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Function Class and Structured Data () &,
The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:
®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.

values () method: accepts an object representing the

computational /geometric context (e.g., which cells and points to compute
values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

= a version of values () that outputs to an Intrepid2: :Data object
(alongside methods that allow the subclass to specify the structure of
the data)

® 3 bit-packed member variable _variesInDimension that allows
subclasses to specify in which spatial dimensions the Function varies
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ExtrudedMeshTopology s

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)
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ExtrudedMeshTopology () i,

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.
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Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.

= maintains a 1D MeshTopology object for each extrusion dimension,
with the rule that this is at least as fine as any corresponding
phase-space cell in that dimension.
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ExtrudedMeshTopology () i,

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.

= maintains a 1D MeshTopology object for each extrusion dimension,
with the rule that this is at least as fine as any corresponding
phase-space cell in that dimension.

= overrides addCell () method (a bottleneck for refinements), and
maintains maps from phase-space cells to cells in each extrusion
dimension (and back).
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Phase-Space Mesh Structure () %,

Camellia supports maintains a base mesh (x axis) and set of
orthogonal extrusion meshes (y axis). The phase-space mesh is a
submesh of the full tensor-product mesh.
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Intrepid2 Sum Factorization () %,

Intrepid2 has support for sum-factorized assembly across the whole
exact sequence, with good performance across Serial CPU, OpenMP,
and CUDA platforms (CUDA shown).

2,000
1,800

5500

1,500
21700 o100 o
H 3 a0 <1200
71,000 ° -
800 430

430

02 ¢

T 2345678010 1723456780910 12345678910 1234567380910
p P P P

Figure: CUDA speedups compared to standard assembly for H!, H(curl),
H(div), and L? norms on hexahedra.

We plan to take advantage of Intrepid2’s support for sum-factorized
assembly in Camellia soon.
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Vlasov-Poisson: 3D3V and 1D1V Equations () i,
The 3D3V (3 space dimensions + 3 velocity dimensions)
Vlasov-Poisson equations take the form:

of | df L q. Of

a Vv atmPoy (1)
V-E::“de%; 2)

€0
E+V)=0 (3)

Here, we have introduced a potential ¢ such that E = -V ¢
(convenient for BCs). We can simplify further by restricting to 1D1V:

of of q_ Of

IRV A 1 4
at+" ax+m Ovy 0 (4)

oE ¢
— = — [ fdvy 5
0x eoj v (5)
¢
E4+ — =
+ax 0 (6)
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Time-Marching Formulation: Vlasov s

Backward Euler discretization of Vlasov:

1 (fk+1 w) + (E%H ) — v fRH Voow | = 1 (fk w);
ot ’ no Ly A T L

~ k+1
here formally tk*1 = tr ((ﬂ‘%ilfkﬂ) -n). We use the graph norm on

the test space. ﬂ‘ﬁl € L2 is non-conforming; we enrich its polynomial
order by 1 to match the order of conforming space.
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Time-Marching Formulation: Poisson s

Poisson Formulation:
(b, Tx) — (b, 0xT) + (Ex, T) =0
<1::X, qny) — (Ex,0xq) = (ﬁv q) ,
€o

where p is computed from the plasma distribution f, and €g is a
constant. We use the graph norm on the test space.
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Space-Time Formulation: Vlasov () %,
We may write the 1D1V Vlasov equation as:

vy f
Vixtv - f =0.
AEf
Multiplying by test w € H! and integrating by parts:
vy f
<%n1 W) - f 1 vXt\)W — 07
%Exf
where formally
vy f Ty
th =tr f N

LEf ny

We use the graph norm on the test space. Here again, t,, € L2 is
non-conforming, we enrich its polynomial order by 1 to match the
order of conforming space.
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Space-Time Formulation: Poisson () %,

Our space-time Poisson Formulation:
<\A/Ev TnX> - (VEI aXT) + (EXIT) = 0

(Bx, d 1) — (Ex, 0xq) = (e"o q> |

Note that the traces Vg, E are only defined at the spatial interfaces
(those for which ny # 0). Note also that p is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on Ve at the left and right boundaries; for the cold diode, we
impose Ve =0 at each.

We use the graph norm on the test space.

MINRES/LS: Oct 5 - Oct 7, 2022 26



Solution Strategy: Fixed Point Iteration () i,

We use a fixed-point iteration with a set maximum number of
iterations:

= up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10~°).

= Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10~7 and 10~°.

MINRES/LS: Oct 5 - Oct 7, 2022 27
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The two-stream instability problem: classic verification problem in
plasma physics:
= Two Maxwellian streams have velocities exactly opposite each
other.
= A small, sinusoidal perturbation in the initial distributions
generates an instability.
= There is a progression form linear, unstable regime, to nonlinear,
stable regime.

= The growth rate of the electric field is known analytically.
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Two-Stream: Recovery of Expected Growth Rate s

We run the two-stream problem with fixed 128 x 128, p = 3 mesh, and
At =0.1, for ug = 2.4,ug = 3.0.

Two-Stream Instability, 128 x 128 quadratic elements Two-Stream Instability, 128 x 128 quadratic elements
10°FT T T T T T [— computed value 103 T ! ! T ] [— computed value
10t | ||~ expected rate 1wl 11— expected rate
100 E| 10t | bl
B} ] S o)
£ g
02f y o1k
1073 4 102F
104 4 103F
0 10 20 30 40 50 0 10 20 30 40 50
t t
(a) Two-stream instability with (b) Two-stream instability with




Sandia

Two-Stream, Adaptive Solution e

Final-time adaptive solution of the two-stream instability problem with
4,096-element budget and quadratic discretization of f. Top left: phase-space
distribution f. Lower left: phase-space mesh. Right: configuration-space electric

field E.




Two-Stream Adaptivity Study ey
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Final-time error plots for two-stream instability problem, 1y = 3.0 case with uniform
(32 x 32- and 64 x 64-element) and adaptive meshes with 1,024 and 4,096
elements with ug = 3.0, for several polynomial orders. Error is measured relative to
an overkill mesh with 256 x 256 = 65,536, p =5 elements. The overkill mesh has
approximately 2.4 million degrees of freedom. All solves were run with a fixed
timestep of At =0.1.
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The Cold Diode Problem e

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.

10 kEV beam
—_—
x'=0 t=d=.0lm
6(0) =0 6(d) = 0

= We have an exact solution due to Jaffé.

= EMPIRE-PIC has very accurate results for this problem.
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EMPIRE Cold-Diode Results flre
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Figure 3-2. Comparison of computed solutions on four mesh levels
with analytic solution (top left, potential; top right E-field; bottom
left, electron number density; and bottom right, velocity).




The Cold Diode Problem and Vlasov () e

Some notes on our approach:
= We nondimensionalize for computations, such that v{_, . =1 and
* —
tinat = 1-
= We rescale on output for comparison to exact solution.

= Inflow BC: approximated with a Maxwellian with thermal velocity
0 = 0.025Vpeam.

= 0 >0 = solving a slightly different problem; can expect some
error due to that difference.

= Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

= For space-time adaptive study, we also introduce a linear temporal
“ramp"”, phasing in the injection BC between t =0 and t = 0.25.

= For final-time results in space-time, we average values between
t=0.999 and t = 1.0.

MINRES/LS: Oct 5 - Oct 7, 2022 34



Sandia

Time-Marching Results s

For a first study, we use the following setup:
= meshes: multiples of 2 x 20 elements
= non-dimensional v range (0.5, 1.5)
= 0=0.025
= quadratic field variables

= test space enrichment Ap = 4.
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Time-Marching Results: Uniform Refinement Study ) &,

Table: Quadratic f, Time-Marching, Relative L2 errors

Mesh Size | Num Time Steps E err. o err. N err. Vy err.
4x40 20 3.951E-04 | 3.715E-04 | 1.206E-03 | 5.041E-04
8x80 25 3.620E-04 | 3.638E-04 | 3.361E-04 | 3.133E-04

16x160 50 3.616E-04 | 3.634E-04 | 3.350E-04 | 3.126E-04
32x320 100 3.322E-04 | 3.333E-04 | 3.117E-04 | 3.069E-04
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Figure: Final-time solution with 4 x 40 mesh, after 20 time steps. f is discretized
with quadratic polynomials; the Vlasov mesh has 160 elements and 2,896 degrees of
freedom; the Poisson mesh has 8 elements and 66 degrees of freedom.
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Figure: Final-time solution with 32 x 320 mesh, after 100 time steps. f is
discretized with quadratic polynomials; the Vlasov mesh has 10240 elements and
175,488 degrees of freedom; the Poisson mesh has 64 elements and 514 degrees of
freedom.
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Vlasov Solution Plots e

From left to right: coarsest to finest solution. Even the finest solution has some
visible error at the inflow boundary (which may not be visible on the screen).
(Note: scale clipped, dramatically for coarsest.)
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To assess the effect of o on the error, we take 100 time steps on a fine

(32 x 640, quadratic) mesh with o = 0.10, 0.5, 0.025, successively.

Table: Quadratic f, Time-Marching, Relative L? errors

o E err. ¢ err. e err. Vy err.

0.10 | 6.478E-03 | 6.509E-03 | 6.007E-03 | 5.579E-03
0.05 1.476E-03 | 1.483E-03 | 1.367E-03 | 1.275E-03
0.025 | 3.322E-04 | 3.333E-04 | 3.117E-04 | 3.069E-04
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Adaptive Solve e

To give just one adaptive solve example:

= start with a fine mesh identical to the finest fixed-size quadratic
solution, 32 x 320 elements

= each time step, refine according to energy error, and unrefine an
equal number of elements

= test space enrichment Ap = 5.
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Adaptive Solve e

Time step 1.
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Adaptive Solve e

Time step 5.
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Adaptive Solve e

Time step 10.
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Adaptive Solve e

Time step 20.
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Adaptive Solve e

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).



Space-Time Results: Uniform Refinement Studies

Table: Relative L2 errors
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Laboratories

f order Mesh Size E err. d err. N err. Vy err.
0 4 x 40 x 40 2.458E-01 | 2.228E-01 | 2.276E-02 | 2.386E-02
0 8 x 80 x 80 1.228E-01 | 1.133E-01 | 1.130E-02 | 1.198E-02
0 16 x 160 x 160 | 6.137E-02 | 5.690E-02 | 5.630E-03 | 5.998E-03
1 4 x 20 x 40 2.481E-03 | 2.505E-02 | 2.446E-03 | 2.200E-03
1 8 x 40 x 80 7.065E-04 | 6.266E-03 | 6.660E-04 | 6.212E-04
1 16 x 80 x 160 | 3.924E-04 | 1.605E-03 | 3.641E-04 | 3.399E-04
2 4 x 10 x 40 5.021E-04 | 4.206E-04 | 2.586E-03 | 6.109E-04
2 8 x 20 x 80 3.660E-04 | 3.673E-04 | 4.753E-04 | 3.365E-04
2 16 x 40 x 160 | 3.618E-04 | 3.635E-04 | 4.016E-04 | 3.138E-04
3 4 x5 x40 6.151E-03 | 2.189E-03 | 2.614E-02 | 3.178E-03
3 8 x 10 x 80 3.624E-04 | 3.632E-04 | 4.126E-04 | 3.133E-04
3 16 x 20 x 160 | 3.619E-04 | 3.637E-04 | 3.353E-04 | 3.126E-04

Uniform refinement study for space-time, for p =1 to 4. As with our finest time-marching
solves, we see error of roughly 3 x 10~* in each variable, due to the nonzero value for .
Note that the second dimension is time; we use coarser discretizations in time for higher
polynomial orders so that we have roughly the same number of temporal nodes as in the
time-marching scheme.

MINRES/LS: Oct 5 - Oct 7, 2022

47



Sandia

H National _
pace-time Rresults Laboratores
106 E Solution & Solution 0 e Solution W vy Solution
1 j 0 ]
115} N s58) 1
osh | —500 N
—1.000 1 11f . 560 e
wooof 1 = 2 2
~1500 N
105 - sS4 1
05 2,000 1
521 N
b 1 2500 4 1 gl
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

x 1102 x 102 x 102 x 102

Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 0 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 2,544 elements and 187,184 degrees of
freedom; the space-time Poisson mesh has 179 elements and 4686 degrees of freedom. The
final-time spatial output has 6 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 1 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 2,866 elements and 210,614 degrees of
freedom; the space-time Poisson mesh has 224 elements and 5,888 degrees of freedom.
The final-time spatial output has 7 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 102,
followed by 2 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 3,482 elements and 254,606 degrees of
freedom; the space-time Poisson mesh has 317 elements and 8,346 degrees of freedom.
The final-time spatial output has 11 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 3 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 3937 elements and 286,811 degrees of
freedom; the space-time Poisson mesh has 383 elements and 10,078 degrees of freedom.
The final-time spatial output has 12 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 4 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 7,801 elements and 562,883 degrees of
freedom; the space-time Poisson mesh has 893 elements and 23,250 degrees of freedom.
The final-time spatial output has 16 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 5 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 12,323 elements and 883,841 degrees of
freedom; the space-time Poisson mesh has 1,283 elements and 33,342 degrees of freedom.
The final-time spatial output has 22 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 6 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 37,159 elements and 2,638,589 degrees of
freedom; the space-time Poisson mesh has 2,858 elements and 74,156 degrees of freedom.
The final-time spatial output has 31 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 7 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 55,534 elements and 3,924,458 degrees of
freedom; the space-time Poisson mesh has 4,157 elements and 107,490 degrees of freedom.
The final-time spatial output has 36 elements.
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial
2 X 4 x 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 1072,
followed by 8 energy-error driven mesh refinements. f is discretized with quadratic
polynomials; the space-time Vlasov mesh has 77,220 elements and 5,447,804 degrees of
freedom; the space-time Poisson mesh has 5,198 elements and 134,004 degrees of freedom.
The final-time spatial output has 38 elements.




Adaptive Space-Time Results () =,

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L? norm on the boundary. In this
run, we use the following setup:

= coarse mesh: 2 x 4 x 10 elements
= 0 =0.025

BC tol: 107°

quadratic field variables (p = 3)

= test space enrichment Ap =4

= greedy refinement parameter 6 = 0.2
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode e

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Conclusion () i,
We've demonstrated feasibility of DPG for Vlasov, in both time-marching and
space-time formulations.

Future work:

= Study of circuit-coupled Vlasov-Poisson in the “B-dot” problem (involves
experimental data).

® Faster assembly: sum factorization and “smart” assembly.

= Matrix-free implementation (Sandia is developing matrix-free preconditioners).
= QOther time-marching formulations (Crank-Nicolson is low-hanging fruit).

® Study of higher dimensional Vlasov-Poisson, Vlasov-Maxwell.

| am very interested in collaborations. If you are interested in helping, please get in
touch. Especially of interest:

= Anything we can do to accelerate high-dimensional DPG.

= Property preservation with DPG (e.g. non-negative field values).

= Machine learning for accelerating DPG solves and/or determining good
anisotropic refinements.

Thanks for your attention!
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