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Plasma Physics

Plasma physics simulations are vital for fundamental science and for
clean energy (fusion power), among other things.
Applications include:

■ Tokamak (and other fusion reactor) design

■ Pulsed-power experimental facilities design (“Z-Next”)
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Plasma Physics Regimes

■ Particle-in-Cell (PIC) approximations work well in rarefied regimes,
where there is not too much material to simulate.

■ Magnetohydrodynamics (MHD) works well, by contrast, where there is
enough material that a fluid approximation of the plasma is a good
model.

■ In real-world applications, however, there is almost always a transition
region between these regimes – for this, direct discretization of Vlasov is
appropriate.
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Camellia 2.0 Development Effort
Goals:

■ Support for GPU and OpenMP execution (via Kokkos): in progress.

■ Support for new Intrepid2 bases, including hierarchical and serendipity
bases: complete.

■ Support for sum-factorized assembly (and more general “smart”
assembly): in progress.

■ Support for matrix-free execution: aspirational.

■ Support for orthogonal extrusions in up to 7D: complete for meshing;
tested in up to 5D for assembly and solve.

■ Support for representing functions that only vary in specified
dimension(s).
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Camellia: Support for Structured Data

■ Camellia aims to be quite general, with support for arbitrary
PDEs on unstructured grids.

■ Working to add mechanisms to preserve structure for improved
performance.

■ A work in progress: foundation laid for e.g. using Intrepid2’s sum
factorization, but not yet implemented.

■ Two examples: Function and ExtrudedMeshTopology
classes.
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Function Class and Structured Data
The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:

■ ConstantScalarFunction - a constant scalar value.

■ SimpleSolutionFunction - mesh-based solution for a specified
variable.

■ Sin ax - sine of ax, where a is a constant.

values() method: accepts an object representing the
computational/geometric context (e.g., which cells and points to compute
values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

■ a version of values() that outputs to an Intrepid2::Data object
(alongside methods that allow the subclass to specify the structure of
the data)

■ a bit-packed member variable variesInDimension that allows
subclasses to specify in which spatial dimensions the Function varies
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ExtrudedMeshTopology

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

■ constructor takes a root-level/unrefined MeshTopology and a set of
coordinates in each extruded dimension.

■ maintains a 1D MeshTopology object for each extrusion dimension,
with the rule that this is at least as fine as any corresponding
phase-space cell in that dimension.

■ overrides addCell() method (a bottleneck for refinements), and
maintains maps from phase-space cells to cells in each extrusion
dimension (and back).
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Phase-Space Mesh Structure

Camellia supports maintains a base mesh (x axis) and set of
orthogonal extrusion meshes (y axis). The phase-space mesh is a
submesh of the full tensor-product mesh.
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Intrepid2 Sum Factorization

Intrepid2 has support for sum-factorized assembly across the whole
exact sequence, with good performance across Serial CPU, OpenMP,
and CUDA platforms (CUDA shown).
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Figure: CUDA speedups compared to standard assembly for H1, H(curl),
H(div), and L2 norms on hexahedra.

We plan to take advantage of Intrepid2’s support for sum-factorized
assembly in Camellia soon.

MINRES/LS: Oct 5 - Oct 7, 2022 21



Vlasov-Poisson: 3D3V and 1D1V Equations

The 3D3V (3 space dimensions + 3 velocity dimensions)
Vlasov-Poisson equations take the form:

∂f

∂t
+ v ·

∂f

∂x
+

q

m
E ·

∂f

∂v
= 0 (1)

∇ ·E =
q

ϵ0

∫
fd3v (2)

E+∇ϕ = 0 (3)

Here, we have introduced a potential ϕ such that E = −∇ϕ

(convenient for BCs). We can simplify further by restricting to 1D1V:

∂f

∂t
+ vx

∂f

∂x
+

q

m
E ·

∂f

∂vx
= 0 (4)

∂E

∂x
=

q

ϵ0

∫
fdvx (5)

E+
∂ϕ

∂x
= 0 (6)
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Time-Marching Formulation: Vlasov

Backward Euler discretization of Vlasov:

1

δt

(
fk+1,w

)
+ ⟨t̂k+1

n ,w⟩−
((

vxf
k+1

q
mEk+1

x fk+1

)
,∇xvw

)
=

1

δt

(
fk,w

)
;

here formally t̂k+1
n = tr

(( vxf
k+1

q
mEk+1

x fk+1

)
·n

)
. We use the graph norm on

the test space. t̂k+1
n ∈ L2 is non-conforming; we enrich its polynomial

order by 1 to match the order of conforming space.
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Time-Marching Formulation: Poisson

Poisson Formulation:

⟨ϕ̂, τnx⟩− (ϕ,∂xτ) + (Ex, τ) = 0

⟨Êx,qnx⟩− (Ex,∂xq) =

(
ρ

ϵ0
,q

)
,

where ρ is computed from the plasma distribution f, and ϵ0 is a
constant. We use the graph norm on the test space.
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Space-Time Formulation: Vlasov

We may write the 1D1V Vlasov equation as:

∇xtv ·

 vxf

f
q
mExf

 = 0.

Multiplying by test w ∈ H1 and integrating by parts:

⟨t̂n,w⟩−

 vxf

f
q
mExf

 ,∇xtvw

 = 0,

where formally

t̂n = tr

 vxf

f
q
mExf

 ·

nx

nt

nv

 .

We use the graph norm on the test space. Here again, t̂n ∈ L2 is
non-conforming; we enrich its polynomial order by 1 to match the
order of conforming space.
MINRES/LS: Oct 5 - Oct 7, 2022 25



Space-Time Formulation: Poisson

Our space-time Poisson Formulation:

⟨V̂E, τnx⟩− (VE,∂xτ) + (Ex, τ) = 0

⟨Êx,qnx⟩− (Ex,∂xq) =

(
ρ

ϵ0
,q

)
.

Note that the traces V̂E, Êx are only defined at the spatial interfaces
(those for which nx ̸= 0). Note also that ρ is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on V̂E at the left and right boundaries; for the cold diode, we
impose V̂E = 0 at each.

We use the graph norm on the test space.

MINRES/LS: Oct 5 - Oct 7, 2022 26



Solution Strategy: Fixed Point Iteration

We use a fixed-point iteration with a set maximum number of
iterations:

■ up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10−6).

■ Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10−7 and 10−9.
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The two-stream instability problem: classic verification problem in
plasma physics:

■ Two Maxwellian streams have velocities exactly opposite each
other.

■ A small, sinusoidal perturbation in the initial distributions
generates an instability.

■ There is a progression form linear, unstable regime, to nonlinear,
stable regime.

■ The growth rate of the electric field is known analytically.

The Two-Stream Instability Problem

A classic verification problem for plasma physics is the two-stream
instability problem.

⌅ Two Maxwellian streams have velocities exactly opposite each
other.

⌅ A small sinusoidal perturbation in the initial distributions generates
an instability.

⌅ Progression from linear, unstable regime to nonlinear, stable
regime.

SIAM CSE March 1-5, 2021 17MINRES/LS: Oct 5 - Oct 7, 2022 28



Two-Stream: Recovery of Expected Growth Rate

We run the two-stream problem with fixed 128× 128,p = 3 mesh, and
∆t = 0.1, for u0 = 2.4,u0 = 3.0.
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(a) Two-stream instability with
u0 = 2.4.
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(b) Two-stream instability with
u0 = 3.0.
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Two-Stream, Adaptive Solution

Final-time adaptive solution of the two-stream instability problem with

4,096-element budget and quadratic discretization of f. Top left: phase-space

distribution f. Lower left: phase-space mesh. Right: configuration-space electric

field E.
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Two-Stream Adaptivity Study
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Final-time error plots for two-stream instability problem, u0 = 3.0 case with uniform

(32× 32- and 64× 64-element) and adaptive meshes with 1,024 and 4,096

elements with u0 = 3.0, for several polynomial orders. Error is measured relative to

an overkill mesh with 256× 256 = 65, 536, p = 5 elements. The overkill mesh has

approximately 2.4 million degrees of freedom. All solves were run with a fixed

timestep of ∆t = 0.1.
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The Cold Diode Problem

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.
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x = d = .01 m

■ We have an exact solution due to Jaffé.

■ EMPIRE-PIC has very accurate results for this problem.
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EMPIRE Cold-Diode Results
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The Cold Diode Problem and Vlasov

Some notes on our approach:

■ We nondimensionalize for computations, such that v∗beam = 1 and
t∗final = 1.

■ We rescale on output for comparison to exact solution.

■ Inflow BC: approximated with a Maxwellian with thermal velocity
σ = 0.025 vbeam.

■ σ > 0 =⇒ solving a slightly different problem; can expect some
error due to that difference.

■ Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

■ For space-time adaptive study, we also introduce a linear temporal
“ramp”, phasing in the injection BC between t = 0 and t = 0.25.

■ For final-time results in space-time, we average values between
t = 0.999 and t = 1.0.
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Time-Marching Results

For a first study, we use the following setup:

■ meshes: multiples of 2× 20 elements

■ non-dimensional v range (0.5, 1.5)

■ σ = 0.025

■ quadratic field variables

■ test space enrichment ∆p = 4.
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Time-Marching Results: Uniform Refinement Study

Table: Quadratic f, Time-Marching, Relative L2 errors

Mesh Size Num Time Steps E err. ϕ err. ne err. vx err.
4x40 20 3.951E-04 3.715E-04 1.206E-03 5.041E-04
8x80 25 3.620E-04 3.638E-04 3.361E-04 3.133E-04

16x160 50 3.616E-04 3.634E-04 3.350E-04 3.126E-04
32x320 100 3.322E-04 3.333E-04 3.117E-04 3.069E-04
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Solution Plots (Coarsest)
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Figure: Final-time solution with 4× 40 mesh, after 20 time steps. f is discretized

with quadratic polynomials; the Vlasov mesh has 160 elements and 2,896 degrees of

freedom; the Poisson mesh has 8 elements and 66 degrees of freedom.
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Solution Plots (Finest)
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Figure: Final-time solution with 32× 320 mesh, after 100 time steps. f is

discretized with quadratic polynomials; the Vlasov mesh has 10240 elements and

175,488 degrees of freedom; the Poisson mesh has 64 elements and 514 degrees of

freedom.
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Vlasov Solution Plots

From left to right: coarsest to finest solution. Even the finest solution has some
visible error at the inflow boundary (which may not be visible on the screen).
(Note: scale clipped, dramatically for coarsest.)
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σ Study

To assess the effect of σ on the error, we take 100 time steps on a fine
(32× 640, quadratic) mesh with σ = 0.10, 0.5, 0.025, successively.

Table: Quadratic f, Time-Marching, Relative L2 errors

σ E err. ϕ err. ne err. vx err.
0.10 6.478E-03 6.509E-03 6.007E-03 5.579E-03
0.05 1.476E-03 1.483E-03 1.367E-03 1.275E-03
0.025 3.322E-04 3.333E-04 3.117E-04 3.069E-04
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Adaptive Solve

To give just one adaptive solve example:

■ start with a fine mesh identical to the finest fixed-size quadratic
solution, 32× 320 elements

■ each time step, refine according to energy error, and unrefine an
equal number of elements

■ test space enrichment ∆p = 5.
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Adaptive Solve

Time step 1.

MINRES/LS: Oct 5 - Oct 7, 2022 42



Adaptive Solve

Time step 5.
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Adaptive Solve

Time step 10.
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Adaptive Solve

Time step 20.
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Adaptive Solve

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).
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Space-Time Results: Uniform Refinement Studies

Table: Relative L2 errors

f order Mesh Size E err. ϕ err. ne err. vx err.
0 4× 40× 40 2.458E-01 2.228E-01 2.276E-02 2.386E-02
0 8× 80× 80 1.228E-01 1.133E-01 1.130E-02 1.198E-02
0 16× 160× 160 6.137E-02 5.690E-02 5.630E-03 5.998E-03
1 4× 20× 40 2.481E-03 2.505E-02 2.446E-03 2.200E-03
1 8× 40× 80 7.065E-04 6.266E-03 6.660E-04 6.212E-04
1 16× 80× 160 3.924E-04 1.605E-03 3.641E-04 3.399E-04
2 4× 10× 40 5.021E-04 4.206E-04 2.586E-03 6.109E-04
2 8× 20× 80 3.660E-04 3.673E-04 4.753E-04 3.365E-04
2 16× 40× 160 3.618E-04 3.635E-04 4.016E-04 3.138E-04
3 4× 5× 40 6.151E-03 2.189E-03 2.614E-02 3.178E-03
3 8× 10× 80 3.624E-04 3.632E-04 4.126E-04 3.133E-04
3 16× 20× 160 3.619E-04 3.637E-04 3.353E-04 3.126E-04

Uniform refinement study for space-time, for p = 1 to 4. As with our finest time-marching
solves, we see error of roughly 3× 10−4 in each variable, due to the nonzero value for σ.
Note that the second dimension is time; we use coarser discretizations in time for higher
polynomial orders so that we have roughly the same number of temporal nodes as in the
time-marching scheme.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 0 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 2,544 elements and 187,184 degrees of

freedom; the space-time Poisson mesh has 179 elements and 4686 degrees of freedom. The

final-time spatial output has 6 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 1 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 2,866 elements and 210,614 degrees of

freedom; the space-time Poisson mesh has 224 elements and 5,888 degrees of freedom.

The final-time spatial output has 7 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 2 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 3,482 elements and 254,606 degrees of

freedom; the space-time Poisson mesh has 317 elements and 8,346 degrees of freedom.

The final-time spatial output has 11 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 3 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 3937 elements and 286,811 degrees of

freedom; the space-time Poisson mesh has 383 elements and 10,078 degrees of freedom.

The final-time spatial output has 12 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 4 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 7,801 elements and 562,883 degrees of

freedom; the space-time Poisson mesh has 893 elements and 23,250 degrees of freedom.

The final-time spatial output has 16 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 5 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 12,323 elements and 883,841 degrees of

freedom; the space-time Poisson mesh has 1,283 elements and 33,342 degrees of freedom.

The final-time spatial output has 22 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 6 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 37,159 elements and 2,638,589 degrees of

freedom; the space-time Poisson mesh has 2,858 elements and 74,156 degrees of freedom.

The final-time spatial output has 31 elements.

MINRES/LS: Oct 5 - Oct 7, 2022 54



Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 7 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 55,534 elements and 3,924,458 degrees of

freedom; the space-time Poisson mesh has 4,157 elements and 107,490 degrees of freedom.

The final-time spatial output has 36 elements.
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Space-time Results
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Figure: Final-time solution for the cold diode problem, using space-time DPG with initial

2× 4× 10 mesh, with initial refinements at inflow to resolve the BC to tolerance of 10−5,

followed by 8 energy-error driven mesh refinements. f is discretized with quadratic

polynomials; the space-time Vlasov mesh has 77,220 elements and 5,447,804 degrees of

freedom; the space-time Poisson mesh has 5,198 elements and 134,004 degrees of freedom.

The final-time spatial output has 38 elements.
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Adaptive Space-Time Results

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L2 norm on the boundary. In this
run, we use the following setup:

■ coarse mesh: 2× 4× 10 elements

■ σ = 0.025

■ BC tol: 10−5

■ quadratic field variables (p = 3)

■ test space enrichment ∆p = 4

■ greedy refinement parameter θ = 0.2
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Cold Diode

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Conclusion
We’ve demonstrated feasibility of DPG for Vlasov, in both time-marching and
space-time formulations.

Future work:

■ Study of circuit-coupled Vlasov-Poisson in the “B-dot” problem (involves
experimental data).

■ Faster assembly: sum factorization and “smart” assembly.

■ Matrix-free implementation (Sandia is developing matrix-free preconditioners).

■ Other time-marching formulations (Crank-Nicolson is low-hanging fruit).

■ Study of higher dimensional Vlasov-Poisson, Vlasov-Maxwell.

I am very interested in collaborations. If you are interested in helping, please get in
touch. Especially of interest:

■ Anything we can do to accelerate high-dimensional DPG.

■ Property preservation with DPG (e.g. non-negative field values).

■ Machine learning for accelerating DPG solves and/or determining good
anisotropic refinements.

Thanks for your attention!
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