
Least-squares space-time formulation for
advection-diffusion problem with efficient linear

solver based on matrix compression

Marcin Łoś(1),
(space-time formulation, implementation)

Paulina Sepulveda-Salaz(2), Mateusz Dobija, Anna Paszyńska(3),
(space-time formulation) (SVD matrix compression)

Maciej Paszyński(1) (project management)
(1) AGH University of Science and Technology, Kraków, Poland

(2) Pontifical Catholic University of Valparaiso, Chile
(3) Jagiellonian University, Kraków, Poland

Marcin Łoś et.al. Least-squares space-time formulation

Introduction

We consider advection-dominated diffusion transient problem
formulated in space-time finite element method
We employ B-splines for discretizations
We propose a stabilization method based on least squares
We generate and compress the resulting matrix using SVD
algorithm applied for blocks of the global matrix (referred to as
H-matrices)
We show that the SVD compressed matrices can be processed
by an iterative solver one order of magnitude faster than
regular matrices

Marcin Łoś et.al. Least-squares space-time formulation

Space-time formulations

We start with a simple advection-diffusion problem:

∂tϕ = ε∆ϕ− β · ∇u + f
u(x , 0) = u0 for x ∈ Ω
u(x , t) = 0 for (x , t) ∈ ∂Ω× [0,T]

For small ε/ ∥β∥ we may encounter instability (advection
dominated)

Marcin Łoś et.al. Least-squares space-time formulation

Simple space-time formulation
[Schafelner, Vassilevski, 2020] Numerical results for adaptive
(negative norm) constrained first order system least squares
formulations.
[Voronin, Lee, Neumüller, Sepulveda, Vassilevski, 2018] Space-time
discretizations using constrained first-order system least squares
(CFOSLS)
[Neumüller, 2013] ST Methods: Fast Solvers and Applications, thesis.
[O. Steinbach, Yang. 2017] Comparison of algebraic multigrid
methods for an adaptive space-time finite-element discretization of
the heat equation in 3D and 4D.
[Demkowicz, Nagaraj, Gopalakrishnan, Sepulveda 2017] A ST DPG
method for the Schrödinger equation.
[Gopalakrishnan, Sepulveda, 2019] A ST DPG method for acoustic
waves in multiple dimensions
[Wieners, Ernesti, 2019] A ST DPG method for acoustic waves
[Führer, Karkulik, 2019] ST least-squares finite elements for
parabolic equations

Marcin Łoś et.al. Least-squares space-time formulation

Simple space-time formulation

We can rewrite the equation as

∂tϕ+ divx (−ε∇ϕ+ βϕ)︸ ︷︷ ︸
Lϕ

= f

or
divx,t σ = f

where σ = (Lϕ, ϕ) and Lϕ = (Lxϕ,Lyϕ)

Space-time formulation: find σ ∈ H(div,Ω× [0,T]), ϕ ∈ V
σ −

[
Lϕ
ϕ

]
= 0

divx,t σ = f

Marcin Łoś et.al. Least-squares space-time formulation

Simple space-time formulation
To simplify a bit, we can remove one unknown, as σ = (σ, ϕ){

∂tϕ+ divx σ = f
σ − Lϕ = 0

We multiply the first equation by test function ψ ∈ L2(Ω)

(∂tϕ, ψ) + (divx σ, ψ) = (f , ψ)

and the other by τ = (τx , τy) ∈ L2(Ω)× L2(Ω)

(σ, τ)− (Lϕ, τ) = 0

leaving us with the problem: find σ ∈ H(div,Ω× [0,T]), ϕ ∈ V
(∂tϕ, ψ) + (∂xσx , ψ) + (∂yσy , ψ) = (f , ψ)

(σx , τx)− (Lxϕ, τx) = 0
(σy , τy)− (Lyϕ, τy) = 0

Marcin Łoś et.al. Least-squares space-time formulation

Simple space-time formulation – discrete level
We discretize the following system

(∂tϕ, ψ) + (∂xσx , ψ) + (∂yσy , ψ) = (f , ψ)
(σx , τx)− (Lxϕ, τx) = 0
(σy , τy)− (Lyϕ, τy) = 0

using quadratic B-splines and get the following structure of the
discrete system At Ax Ay

Lx M 0
Ly 0 M


 ϕσx
σy

 =

f
0
0


where

M ∼ u, v 7→ (u, v) (mass matrix)
Aγ ∼ u, v 7→ (∂γu, v)
Lγ ∼ u, v 7→ (Lγu, v)

Marcin Łoś et.al. Least-squares space-time formulation

Example results – pure diffusion

(a) ε = 5 × 10−3 (b) ε = 10−3 (c) ε = 10−5

Figure: Results for β = 0, T = 1, 32× 32× 32 mesh with quadratic
B-splines

Marcin Łoś et.al. Least-squares space-time formulation

Example results – diffusion and advection

(a) ε = 10−3, s = 0.3 (b) ε = 10−5, s = 0.3 (c) ε = 10−6, s = 0.5

(d) ε = 10−3, s = 1 (e) ε = 10−5, s = 1 (f) ε = 10−6, s = 1
Figure: Results for β = (0, s), T = 1, 32× 32× 32 mesh with quadratic
B-splines

Marcin Łoś et.al. Least-squares space-time formulation

Mixed formulation

Idea: constrained least-squares problem

min J(σ, ϕ) = 1
2

∥∥∥∥∥σ −
[
Lϕ
ϕ

]∥∥∥∥∥
2

= 1
2 ∥σ − Lϕ∥

2 + 1
2 ∥σ∗ − ϕ∥2

subject to divx,t σ = f

where σ ∈ H(div,Ω× [0,T]), ϕ ∈ V and σ = (σ, σ∗)

Lagrange multipliers:

G(σ, ϕ, λ) = 1
2 ∥σ − Lϕ∥

2 + 1
2 ∥σ∗ − ϕ∥2 + (divx,t σ − f , λ)

Marcin Łoś et.al. Least-squares space-time formulation

Mixed formulation

Problem: find (σ, ϕ, λ) ∈W such that for all (τ , ω, µ) ∈W

(σ − Lϕ, τ − Lω) + (σ∗ − ϕ, τ∗ − ω)
+ (divx,t τ , λ) + (divx,t σ − f , µ) = 0

where W = H(div,Ω× [0,T])× V × L2(Ω× [0,T])

Equivalently:

(ϕ, ω) + (Lϕ,Lω)− (σ∗, ω) − (σ,Lω) = 0
− (ϕ, τ∗) + (σ∗, τ∗) + (λ, ∂tτ∗) = 0
− (Lϕ, τ) + (σ, τ) + (λ, divx τ) = 0

+ (∂tσ∗, µ) + (divx σ, µ) = (f , µ)

Marcin Łoś et.al. Least-squares space-time formulation

Example results with stabilization

(a) ε = 10−3, s = 1 (b) ε = 10−5, s = 0.5 (c) ε = 10−6, s = 1

Figure: Results for β = (0, s), T = 1, 32× 32× 32 mesh with quadratic
B-splines (top: no stabilization, bottom: stabilization)

Marcin Łoś et.al. Least-squares space-time formulation

Mixed formulation matrix
Discretization leads to

M + K −M −LT
x −LT

y 0
−M M 0 0 AT

t
−Lx 0 M 0 AT

x
−Ly 0 0 M AT

y
0 At Ax Ay 0




ϕ
σ∗
σx
σy
λ

 =


0
0
0
0
f


where

M ∼ u, v 7→ (u, v) (mass matrix)
Aγ ∼ u, v 7→ (∂γu, v)
Lγ ∼ u, v 7→ (Lγu, v)
K ∼ u, v ∼ (Lu,Lv)

Similar structure as in DPG (saddle-point system)

How to solve it efficiently?
Marcin Łoś et.al. Least-squares space-time formulation

Matrix compression with Singular Value Decomposition

A = UDV , [U,D,V] = SVD(B),
U ∈Mn×n,D – diagonal m × n,V ∈Mm×m

Truncated SVD
The entries of D (singular values) are sorted in descending order.
The diagonal values less than the compression threshold δ are
removed together with corresponding columns of U and rows of V .
The rank of the compressed matrix s = max{i : dii > δ}.
Optimal rank s approximation wrt Frobenius norm (Eckart–Young)

Marcin Łoś et.al. Least-squares space-time formulation

Hierarchical compression

In each node, the decision about storing the block in SVD form or
dividing the block into submatrices depends on the so-called
admissibility condition of the block

Marcin Łoś et.al. Least-squares space-time formulation

Recursive compression: node = compress_matrix(A, δ, b)

Require: A ∈Mm×n, δ compression threshold, b maximum rank
1: v ← create_tree()
2: A11 ← A(1 : m

2 , 1 : n
2)

3: A12 ← A(1 : m
2 ,

n
2 + 1 : n)

4: A21 ← A(m
2 + 1 : m, 1 : n

2)
5: A22 ← A(m

2 + 1 : m, n
2 : n)

6: n1 ← process_matrix(A11, δ, b)
7: n2 ← process_matrix(A12, δ, b)
8: n3 ← process_matrix(A21, δ, b)
9: n4 ← process_matrix(A22, δ, b)

10: v .sons ← [n1, n2, n3, n4]

Marcin Łoś et.al. Least-squares space-time formulation

Processing of a block: node = process_matrix(A, δ, b)
Require: A ∈Mm×n, δ compression threshold, b maximum rank

1: if A = 0 then
2: create new node v ; v .rank ← 0; v .size ← size(A);

return v ;
3: end if
4: [U,D,V]← SVD(A); σ ← diag(D);
5: rank ← card ({i : σi > δ}) ;
6: if rank < b then
7: create new node v ; v .rank ← rank;
8: v .singularvalues ← σ(1 : rank);
9: v .U ← U(∗, 1 : rank);

10: v .V ← D(1 : rank, 1 : rank) ∗ V (1 : rank, ∗);
11: v .sons ← ∅; v .size ← size(A);
12: return v ;
13: else
14: return compress_matrix(A, δ, b);
15: end if

Marcin Łoś et.al. Least-squares space-time formulation

Practical considerations

SVD is expensive: standard LAPACK subroutine dgesvd has time
complexity O(N3) for a square matrix
(C. F. Van Loan G. H. Golub. Matrix Computations. Johns Hopkins
University Press, London, 1996.)

We avoid computing SVD and use other splitting criteria
maximum size
tree depth
density of nonzero entries
. . .

If matrix comes from FEM discretization, we have a lot of
information about its structure

Marcin Łoś et.al. Least-squares space-time formulation

Matrix vector multiplication
How to multiply a vector by a compressed matrix?

leaf case (left): computational cost of matrix-vector
multiplication with compressed matrix and s vectors is
O(rms + rns), when n = m = N ≫ r it reduces to O(Nrs)
recursive step (right): multiplication of a matrix compressed
into four SVD blocks by the vector partitioned into two blocks,

following
[
C2 ∗ (C1 ∗ X1) + D2 ∗ (D1 ∗ X2)
E2 ∗ (E1 ∗ X1) + F2 ∗ (F1 ∗ X2)

]
. The

computational cost is O(Nrs).

Marcin Łoś et.al. Least-squares space-time formulation

Matrix vector multiplication:
Y = matrix_vector_mult(v , X)

Require: node v , X vectors to multiply
1: if v .sons = ∅ then
2: if v .rank = 0 then
3: return zeros(size(A).rows);
4: end if
5: return v .U ∗ (v .V ∗ X);
6: end if
7: rows ← size(X).rows;
8: X1 ← X (1 : rows

2 , ∗); X2 ← X (rows
2 + 1 : rows, ∗);

9: Y (1)
1 ← matrix_vector_mult(v .sons(1),X1);

10: Y (2)
1 ← matrix_vector_mult(v .sons(2),X2);

11: Y (1)
2 ← matrix_vector_mult(v .sons(3),X1);

12: Y (2)
2 ← matrix_vector_mult(v .sons(4),X2);

13: return
[
Y (1)

1 + Y (2)
1

Y (1)
2 + Y (2)

2

]
;

Marcin Łoś et.al. Least-squares space-time formulation

Matrix-vector multiplication complexity

Crucial assumption: most of the compression tree is shallow

Tree built uniformly until fixed size N0 – poor performance

C(N) = 4C(N/2)︸ ︷︷ ︸
multiplication

+ O(N)︸ ︷︷ ︸
addition

, C(N0) = O(N0rs)

⇒ C(N) = O(N2)

But: sparsity ⇒ large empty/simple regions ⇒ large blocks

Marcin Łoś et.al. Least-squares space-time formulation

Matrix-vector multiplication complexity – example

At each step: 2 leaves, 2 interior nodes

C(N) = 2C(N/2) + 2O(Nrs/2)︸ ︷︷ ︸
multiplication

+ O(N)︸ ︷︷ ︸
addition

, C(N0) = O(N0rs)

⇒ C(N) = O(N log N)

Marcin Łoś et.al. Least-squares space-time formulation

Compressed matrices of space-time formulation

Figure: Compression of space-time 8× 8× 8 matrix.

matrix iterations FLOPS FLOPS per iteration
original 10 25,112,040 2,511,204

compressed 7 2,307,760 329,680

Marcin Łoś et.al. Least-squares space-time formulation

Conclusions

Residual minimization methods can be successfully applied for
space-time formulations
Hierarchical compression of matrices with SVD algorithm
plugged into the GMRES iterative solver can speed up the
solution process one order of magnitude
Future work

exploring other space-time formulations
investigation of compression error
choice of singular value threshold and max rank
admissibility condition

Marcin Łoś et.al. Least-squares space-time formulation

