Least-squares space-time formulation for
advection-diffusion problem with efficient linear
solver based on matrix compression

Marcin tos),
(space-time formulatlon implementation)

Paulina Sepulveda- Salaz(z) Mateusz Dobija, Anna Paszyriska(3),
(space-time formulation) (SVD matrix compression)

Il/'\'; \
Maciej Paszynski(!) (project management)
(1) AGH University of Science and Technology, Krakéw, Poland
(2) Pontifical Catholic University of Valparaiso, Chile
() Jagiellonian University, Krakéw, Poland

Marcin tos et.al. Least-squares space-time formulation

Introduction

@ We consider advection-dominated diffusion transient problem
formulated in space-time finite element method

@ We employ B-splines for discretizations
@ We propose a stabilization method based on least squares

@ We generate and compress the resulting matrix using SVD
algorithm applied for blocks of the global matrix (referred to as
H-matrices)

@ We show that the SVD compressed matrices can be processed
by an iterative solver one order of magnitude faster than
regular matrices

Marcin tos et.al. Least-squares space-time formulation

Space-time formulations

We start with a simple advection-diffusion problem:

Orp=eA¢p—p-Vu+f
u(x,0) =uy forx €Q
u(x,t) =0 for (x,t) € 9Q x [0, T]

For small ¢/ ||3|| we may encounter instability (advection
dominated)

Marcin tos et.al. Least-squares space-time formulation

Simple space-time formulation

@ [Schafelner, Vassilevski, 2020] Numerical results for adaptive
(negative norm) constrained first order system least squares
formulations.

@ [Voronin, Lee, Neumiiller, Sepulveda, Vassilevski, 2018] Space-time
discretizations using constrained first-order system least squares
(CFOSLS)

@ [Neumdiller, 2013] ST Methods: Fast Solvers and Applications, thesis.

@ [O. Steinbach, Yang. 2017] Comparison of algebraic multigrid
methods for an adaptive space-time finite-element discretization of
the heat equation in 3D and 4D.

@ [Demkowicz, Nagaraj, Gopalakrishnan, Sepulveda 2017] A ST DPG
method for the Schrédinger equation.

@ [Gopalakrishnan, Sepulveda, 2019] A ST DPG method for acoustic
waves in multiple dimensions

@ [Wieners, Ernesti, 2019] A ST DPG method for acoustic waves

@ [Fihrer, Karkulik, 2019] ST least-squares finite elements for
parabolic equations

Marcin tos et.al. Least-squares space-time formulation

Simple space-time formulation

We can rewrite the equation as
O0tp + divy (—eVo + o) = f
—_———

L

or
divyto = f

where 0 = (Lo, ¢) and Lo = (Lxo, Ly d)

Space-time formulation: find o € H(div,Q2 x [0, T]), ¢ € V

[t
divyro = f

Marcin tos et.al. Least-squares space-time formulation

Simple space-time formulation

To simplify a bit, we can remove one unknown, as o = (o, ¢)

0tp +divyo =f
o—Lp=0

We multiply the first equation by test function ¢ € L?(Q)
(0,) + (divk o, ¥) = (f,)
and the other by T = (7, 7,) € L%(Q) x L%(Q)
(0,7) = (Lo, T) =0
leaving us with the problem: find o € H(div,Q x [0, T]), ¢ € V

(at(ba ¢) + (8XJX7 w) + (aya)ﬁ 1/1) = (fa w)
(Uxa TX) - (£X¢7 TX) =0
(oy;7y) = (Lyg, 1) =0

Marcin tos et.al. Least-squares space-time formulation

Simple space-time formulation — discrete level

We discretize the following system

(8t¢7 ¢) + (axaxa ¢) + (ayaya ,QD) = (fa 1/})
(UX7TX) - (£X¢) Tx) =0
(oy,7y) = (Ly¢,7y) =0

using quadratic B-splines and get the following structure of the
discrete system

A Ac A T f
Le M 0] |ox| =10
L, o M||o| |0

where
@ M~ u,vi (u,v) (mass matrix)
e A, ~u, v (Oyu,v)
o L, ~uvi (Lyu,v)

Marcin tos et.al. Least-squares space-time formulation

Example results — pure diffusion

(a)e=5x10"3 (b) e =1073 (c)e=10"%

Figure: Results for 3 =0, T =1, 32 x 32 x 32 mesh with quadratic
B-splines

Marcin to$ et.al. Least-squares space-time formulation

Example results — diffusion and advection

(d)e=103s=1 (e)e=10"°s=1 (fle=10"% s=1
Figure: Results for 8 = (0,s), T =1, 32 x 32 x 32 mesh with quadratic
B-splines

Marcin tos et.al. Least-squares space-time formulation

Mixed formulation

Idea: constrained least-squares problem
Lo
o' [e—

where o € H(div,Q2 x [0, T]), ¢ € V and o = (o, 0.)

1
2

subject to div, ;o = f

2 1
= |lo — Lo|* + 5 o — o

min J(g, ¢) 5

Lagrange multipliers:

1 1 .
Gla. ¢, A) =3 llo - Lo|* + 5 llow = SI7 + (divee o — £,)

Marcin tos et.al. Least-squares space-time formulation

Mixed formulation

Problem: find (o, ¢, \) € W such that for all (7, w, u) € W

(0 — LT — Lw)+ (s — ¢, T —w)
+ (divt 7, A) + (divgr o — f,u) =0

where W = H(div,Q x [0, T]) x V x L2(Q x [0, T])

Equivalently:
(¢,W)+(£¢,£w)—(0*,w) —(U,EW) =0
- ((bv T*) + (0*7 T*) + ()\, 6157'*) =0
— (Lo, 7) +(o,7) 4+ (\divkT) =0

+ (0¢0s,) + (divk o, 1) = (f,p)

Marcin tos et.al. Least-squares space-time formulation

Example results with stabilization

(b) e=10"% 5s=05

Figure: Results for 8 = (0,s), T =1, 32 x 32 x 32 mesh with quadratic
B-splines (top: no stabilization, bottom: stabilization)

Marcin tos et.al. Least-squares space-time formulation

Mixed formulation matrix

Discretization leads to

M+K —-M —LT

-M M 0
L, 0 M
—L, 0 0

0 A A

where

—L] 079 0
0 A/l |o. 0
0 All|lox| =10
M Al oy 0
A, 0] [A f

@ M~ u,vi (u,v) (mass matrix)

e A, ~u, v (Oyu,v)
o L, ~u, v (Lyu,v)
e K~u,v~(Lu Lv)

Similar structure as in DPG (saddle-point system)

How to solve it efficiently?

Marcin tos et.al.

Least-squares space-time formulation

Matrix compression with Singular Value Decomposition

m m
r
’ . . . N\ " B I N . I
(SVD) (compression) (multiplication)

A=UDV, [U,D,V]=SVD(B),
Ue M™" D - diagonal m x n,V € M™*™

Truncated SVD

The entries of D (singular values) are sorted in descending order.
The diagonal values less than the compression threshold § are
removed together with corresponding columns of U and rows of V.
The rank of the compressed matrix s = max{i: dj > d}.

Optimal rank s approximation wrt Frobenius norm (Eckart—Young)

Marcin tos et.al. Least-squares space-time formulation

Hierarchical compression

7\
EnEE .l.. - HEE
rrrrrrrr | e pmes

mrr

In each node, the decision about storing the block in SVD form or
dividing the block into submatrices depends on the so-called
admissibility condition of the block

Marcin to$ et.al. Least-squares space-time formulation

Recursive compression: node = compress_matrix(A, d, b)

Require: A € M™*" § compression threshold, b maximum rank
1. v < create__tree()

All(—A(lig,lig)
Ap +— A(l: 3,5+ 1:n)
A21<—A(%+1:m,1:g)

Ay A(Z+1:m,2:n)
ni < process_matrix(Ai1, d, b
np < process_matrix(Aip, d, b
n3 < process_matrix(Ap1, d, b
(
]

© e N TR N

)
)
)
ng < process_matrix(Ag, 9, b)
v.sons < [ny, ny, n3, N

._.
e

Marcin tos et.al. Least-squares space-time formulation

Processing of a block: node = process_matrix(A, J, b)

Require: A € M™*" § compression threshold, b maximum rank

1:
2:

10:
11:
12:
13:
14:
15:

if A=0 then
create new node v; v.rank < 0; v.size < size(A);
return v;

end if

[U,D, V] < SVD(A); o «+ diag(D);

rank < card ({i: o; > d});

if rank < b then
create new node v; v.rank < rank;
v.singularvalues < o(1 : rank);
v.U < U(x,1: rank);
v.V < D(1: rank,1 : rank) x V(1 : rank, x);
v.sons < 0; v.size < size(A);
return v;

else
return compress_matrix(A, 9, b);

end if

Marcin tos et.al. Least-squares space-time formulation

Practical considerations

SVD is expensive: standard LAPACK subroutine dgesvd has time
complexity O(N3) for a square matrix

(C. F. Van Loan G. H. Golub. Matrix Computations. Johns Hopkins
University Press, London, 1996.)

We avoid computing SVD and use other splitting criteria
@ maximum size
@ tree depth
@ density of nonzero entries

If matrix comes from FEM discretization, we have a lot of
information about its structure

Marcin tos et.al. Least-squares space-time formulation

Matrix vector multiplication

How to multiply a vector by a compressed matrix?
e leaf case (left): computational cost of matrix-vector
multiplication with compressed matrix and s vectors is
O(rms + rns), when n = m = N > r it reduces to O(Nrs)
e recursive step (right): multiplication of a matrix compressed
into four SVD blocks by the vector partitioned into two blocks,
G * (Cl * Xl) + Dy * (Dl * Xg)‘| The
Ez*(El*Xl)—l—Fz*(F]_*XQ) ’
computational cost is O(Nrs).

following

o

(a)
m S n m
- E

r
In Im=ln B Im
: AU I

Marcin to$ et.al. Least-squares space-time formulation

Matrix vector multiplication:
Y = matrix_vector_mult(v, X)

Require: node v, X vectors to multiply
1: if v.sons = () then

2: if v.rank = 0 then
3: return zeros(size(A).rows);
4: end if
5. return v.U x (v.V x X);
6: end if
7: rows < size(X).rows;
8: Xp + X(1: 552, %); Xo + X(5= +1: rows, *);
9: Yl(l) < matrix_vector mult(v.sons(1), Xi);
10: Y1(2) < matrix_ vector_mult(v.sons(2), Xz);
11: Yz(l) + matrix_ vector mult(v.sons(3), X1);
12: Y2(2) + matrix_ vector_ mult(v.sons(4), X2);
1 2

13: return leli + Yl;q ;

Yo, + Y,

Marcin to$ et.al. Least-squares space-time formulation

Matrix-vector multiplication complexity

Crucial assumption: most of the compression tree is shallow

Tree built uniformly until fixed size Ny — poor performance

C(N)= 4C(N/2) + O(N), C(Ng)= O(Nyprs)
——
multiplication addition

= C(N) = O(N?)

But: sparsity = large empty/simple regions = large blocks

Marcin tos et.al. Least-squares space-time formulation

Matrix-vector multiplication complexity — example

&

E

N

i

N

T

At each step: 2 leaves, 2 interior nodes

C(N) =2C(N/2) +20(Nrs/2) + O(N), C(Ng) = O(Nors)
multiplication m

= C(N) = O(Nlog N)

Marcin tos et.al. Least-squares space-time formulation

Compressed matrices of space-time formulation

Figure: Compression of space-time 8 x 8 x 8 matrix.

matrix iterations FLOPS FLOPS per iteration

original 10 25,112,040 2,511,204
compressed 7 2,307,760 329,680

Marcin tos et.al. Least-squares space-time formulation

Conclusions

@ Residual minimization methods can be successfully applied for
space-time formulations

@ Hierarchical compression of matrices with SVD algorithm
plugged into the GMRES iterative solver can speed up the
solution process one order of magnitude

@ Future work

exploring other space-time formulations
investigation of compression error

choice of singular value threshold and max rank
admissibility condition

Marcin tos et.al. Least-squares space-time formulation

