
Least-squares space-time formulation for
advection-diffusion problem with efficient linear

solver based on matrix compression

Marcin Łoś(1),
(space-time formulation, implementation)

Paulina Sepulveda-Salaz(2), Mateusz Dobija, Anna Paszyńska(3),
(space-time formulation) (SVD matrix compression)

Maciej Paszyński(1) (project management)
(1) AGH University of Science and Technology, Kraków, Poland

(2) Pontifical Catholic University of Valparaiso, Chile
(3) Jagiellonian University, Kraków, Poland

Marcin Łoś et.al. Least-squares space-time formulation



Introduction

We consider advection-dominated diffusion transient problem
formulated in space-time finite element method
We employ B-splines for discretizations
We propose a stabilization method based on least squares
We generate and compress the resulting matrix using SVD
algorithm applied for blocks of the global matrix (referred to as
H-matrices)
We show that the SVD compressed matrices can be processed
by an iterative solver one order of magnitude faster than
regular matrices
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Space-time formulations

We start with a simple advection-diffusion problem:

∂tϕ = ε∆ϕ− β · ∇u + f
u(x , 0) = u0 for x ∈ Ω
u(x , t) = 0 for (x , t) ∈ ∂Ω× [0,T ]

For small ε/ ∥β∥ we may encounter instability (advection
dominated)
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Simple space-time formulation
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Simple space-time formulation

We can rewrite the equation as

∂tϕ+ divx (−ε∇ϕ+ βϕ)︸ ︷︷ ︸
Lϕ

= f

or
divx,t σ = f

where σ = (Lϕ, ϕ) and Lϕ = (Lxϕ,Lyϕ)

Space-time formulation: find σ ∈ H(div,Ω× [0,T ]), ϕ ∈ V
σ −

[
Lϕ
ϕ

]
= 0

divx,t σ = f
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Simple space-time formulation
To simplify a bit, we can remove one unknown, as σ = (σ, ϕ){

∂tϕ+ divx σ = f
σ − Lϕ = 0

We multiply the first equation by test function ψ ∈ L2(Ω)

(∂tϕ, ψ) + (divx σ, ψ) = (f , ψ)

and the other by τ = (τx , τy ) ∈ L2(Ω)× L2(Ω)

(σ, τ )− (Lϕ, τ ) = 0

leaving us with the problem: find σ ∈ H(div,Ω× [0,T ]), ϕ ∈ V
(∂tϕ, ψ) + (∂xσx , ψ) + (∂yσy , ψ) = (f , ψ)

(σx , τx )− (Lxϕ, τx ) = 0
(σy , τy )− (Lyϕ, τy ) = 0
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Simple space-time formulation – discrete level
We discretize the following system

(∂tϕ, ψ) + (∂xσx , ψ) + (∂yσy , ψ) = (f , ψ)
(σx , τx )− (Lxϕ, τx ) = 0
(σy , τy )− (Lyϕ, τy ) = 0

using quadratic B-splines and get the following structure of the
discrete system At Ax Ay

Lx M 0
Ly 0 M


 ϕσx
σy

 =

f
0
0


where

M ∼ u, v 7→ (u, v) (mass matrix)
Aγ ∼ u, v 7→ (∂γu, v)
Lγ ∼ u, v 7→ (Lγu, v)
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Example results – pure diffusion

(a) ε = 5 × 10−3 (b) ε = 10−3 (c) ε = 10−5

Figure: Results for β = 0, T = 1, 32× 32× 32 mesh with quadratic
B-splines
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Example results – diffusion and advection

(a) ε = 10−3, s = 0.3 (b) ε = 10−5, s = 0.3 (c) ε = 10−6, s = 0.5

(d) ε = 10−3, s = 1 (e) ε = 10−5, s = 1 (f) ε = 10−6, s = 1
Figure: Results for β = (0, s), T = 1, 32× 32× 32 mesh with quadratic
B-splines
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Mixed formulation

Idea: constrained least-squares problem

min J(σ, ϕ) = 1
2

∥∥∥∥∥σ −
[
Lϕ
ϕ

]∥∥∥∥∥
2

= 1
2 ∥σ − Lϕ∥

2 + 1
2 ∥σ∗ − ϕ∥2

subject to divx,t σ = f

where σ ∈ H(div,Ω× [0,T ]), ϕ ∈ V and σ = (σ, σ∗)

Lagrange multipliers:

G(σ, ϕ, λ) = 1
2 ∥σ − Lϕ∥

2 + 1
2 ∥σ∗ − ϕ∥2 + (divx,t σ − f , λ)
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Mixed formulation

Problem: find (σ, ϕ, λ) ∈W such that for all (τ , ω, µ) ∈W

(σ − Lϕ, τ − Lω) + (σ∗ − ϕ, τ∗ − ω)
+ (divx,t τ , λ) + (divx,t σ − f , µ) = 0

where W = H(div,Ω× [0,T ])× V × L2(Ω× [0,T ])

Equivalently:

(ϕ, ω) + (Lϕ,Lω)− (σ∗, ω) − (σ,Lω) = 0
− (ϕ, τ∗) + (σ∗, τ∗) + (λ, ∂tτ∗) = 0
− (Lϕ, τ ) + (σ, τ ) + (λ, divx τ ) = 0

+ (∂tσ∗, µ) + (divx σ, µ) = (f , µ)
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Example results with stabilization

(a) ε = 10−3, s = 1 (b) ε = 10−5, s = 0.5 (c) ε = 10−6, s = 1

Figure: Results for β = (0, s), T = 1, 32× 32× 32 mesh with quadratic
B-splines (top: no stabilization, bottom: stabilization)
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Mixed formulation matrix
Discretization leads to

M + K −M −LT
x −LT

y 0
−M M 0 0 AT

t
−Lx 0 M 0 AT

x
−Ly 0 0 M AT

y
0 At Ax Ay 0




ϕ
σ∗
σx
σy
λ

 =


0
0
0
0
f


where

M ∼ u, v 7→ (u, v) (mass matrix)
Aγ ∼ u, v 7→ (∂γu, v)
Lγ ∼ u, v 7→ (Lγu, v)
K ∼ u, v ∼ (Lu,Lv)

Similar structure as in DPG (saddle-point system)

How to solve it efficiently?
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Matrix compression with Singular Value Decomposition

A = UDV , [U,D,V ] = SVD(B),
U ∈Mn×n,D – diagonal m × n,V ∈Mm×m

Truncated SVD
The entries of D (singular values) are sorted in descending order.
The diagonal values less than the compression threshold δ are
removed together with corresponding columns of U and rows of V .
The rank of the compressed matrix s = max{i : dii > δ}.
Optimal rank s approximation wrt Frobenius norm (Eckart–Young)
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Hierarchical compression

In each node, the decision about storing the block in SVD form or
dividing the block into submatrices depends on the so-called
admissibility condition of the block
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Recursive compression: node = compress_matrix(A, δ, b)

Require: A ∈Mm×n, δ compression threshold, b maximum rank
1: v ← create_tree()
2: A11 ← A(1 : m

2 , 1 : n
2 )

3: A12 ← A(1 : m
2 ,

n
2 + 1 : n)

4: A21 ← A(m
2 + 1 : m, 1 : n

2 )
5: A22 ← A(m

2 + 1 : m, n
2 : n)

6: n1 ← process_matrix(A11, δ, b)
7: n2 ← process_matrix(A12, δ, b)
8: n3 ← process_matrix(A21, δ, b)
9: n4 ← process_matrix(A22, δ, b)

10: v .sons ← [n1, n2, n3, n4]
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Processing of a block: node = process_matrix(A, δ, b)
Require: A ∈Mm×n, δ compression threshold, b maximum rank

1: if A = 0 then
2: create new node v ; v .rank ← 0; v .size ← size(A);

return v ;
3: end if
4: [U,D,V ]← SVD(A); σ ← diag(D);
5: rank ← card ({i : σi > δ}) ;
6: if rank < b then
7: create new node v ; v .rank ← rank;
8: v .singularvalues ← σ(1 : rank);
9: v .U ← U(∗, 1 : rank);

10: v .V ← D(1 : rank, 1 : rank) ∗ V (1 : rank, ∗);
11: v .sons ← ∅; v .size ← size(A);
12: return v ;
13: else
14: return compress_matrix(A, δ, b);
15: end if
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Practical considerations

SVD is expensive: standard LAPACK subroutine dgesvd has time
complexity O(N3) for a square matrix
(C. F. Van Loan G. H. Golub. Matrix Computations. Johns Hopkins
University Press, London, 1996.)

We avoid computing SVD and use other splitting criteria
maximum size
tree depth
density of nonzero entries
. . .

If matrix comes from FEM discretization, we have a lot of
information about its structure
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Matrix vector multiplication
How to multiply a vector by a compressed matrix?

leaf case (left): computational cost of matrix-vector
multiplication with compressed matrix and s vectors is
O(rms + rns), when n = m = N ≫ r it reduces to O(Nrs)
recursive step (right): multiplication of a matrix compressed
into four SVD blocks by the vector partitioned into two blocks,

following
[
C2 ∗ (C1 ∗ X1) + D2 ∗ (D1 ∗ X2)
E2 ∗ (E1 ∗ X1) + F2 ∗ (F1 ∗ X2)

]
. The

computational cost is O(Nrs).
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Matrix vector multiplication:
Y = matrix_vector_mult(v , X )

Require: node v , X vectors to multiply
1: if v .sons = ∅ then
2: if v .rank = 0 then
3: return zeros(size(A).rows);
4: end if
5: return v .U ∗ (v .V ∗ X );
6: end if
7: rows ← size(X ).rows;
8: X1 ← X (1 : rows

2 , ∗); X2 ← X ( rows
2 + 1 : rows, ∗);

9: Y (1)
1 ← matrix_vector_mult(v .sons(1),X1);

10: Y (2)
1 ← matrix_vector_mult(v .sons(2),X2);

11: Y (1)
2 ← matrix_vector_mult(v .sons(3),X1);

12: Y (2)
2 ← matrix_vector_mult(v .sons(4),X2);

13: return
[
Y (1)

1 + Y (2)
1

Y (1)
2 + Y (2)

2

]
;
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Matrix-vector multiplication complexity

Crucial assumption: most of the compression tree is shallow

Tree built uniformly until fixed size N0 – poor performance

C(N) = 4C(N/2)︸ ︷︷ ︸
multiplication

+ O(N)︸ ︷︷ ︸
addition

, C(N0) = O(N0rs)

⇒ C(N) = O(N2)

But: sparsity ⇒ large empty/simple regions ⇒ large blocks
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Matrix-vector multiplication complexity – example

At each step: 2 leaves, 2 interior nodes

C(N) = 2C(N/2) + 2O(Nrs/2)︸ ︷︷ ︸
multiplication

+ O(N)︸ ︷︷ ︸
addition

, C(N0) = O(N0rs)

⇒ C(N) = O(N log N)
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Compressed matrices of space-time formulation

Figure: Compression of space-time 8× 8× 8 matrix.

matrix iterations FLOPS FLOPS per iteration
original 10 25,112,040 2,511,204

compressed 7 2,307,760 329,680
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Conclusions

Residual minimization methods can be successfully applied for
space-time formulations
Hierarchical compression of matrices with SVD algorithm
plugged into the GMRES iterative solver can speed up the
solution process one order of magnitude
Future work

exploring other space-time formulations
investigation of compression error
choice of singular value threshold and max rank
admissibility condition
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