Scalable Simulation of Fiber Laser Model with DPG

Stefan Henneking, **Jacob Badger**, and Leszek Demkowicz Oden Institute, The University of Texas at Austin

Minimum Residual and Least-Squares Finite Element Methods (MINRES/LS-5) 5-7 Oct. 2022, Santiago, Chile

The University of Texas at Austin Oden Institute for Computational Engineering and Sciences

Outline

Scalable Simulation with hp3D

Active Gain Fiber Amplifiers

Weakly-guiding, continuous-wave, step-index fiber amplifier schematic¹

S. Henneking, J. Badger, and L. Demkowicz

¹J. Grosek. "Coupled mode theory fiber amplifier model". Technical Report, AFRL. 2018

- (Combinable) Power scaling in single-mode continuous-wave optical fiber amplifiers limited by onset of nonlinear effects at high optical intensities including:
 - Stimulated Brillouin Scattering (SBS) Acoustic scattering of field by medium
 - Stimulated Raman Scattering (SRS) Optical scattering of field by medium

²W. Zou, X. Long, and J. Chen. "Brillouin scattering in optical fibers and its application to distributed sensors". In: Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications (2015)

S. Henneking, J. Badger, and L. Demkowicz

MINRES/LS-5

- (Combinable) Power scaling in single-mode continuous-wave optical fiber amplifiers limited by onset of nonlinear effects at high optical intensities including:
 - Stimulated Brillouin Scattering (SBS) Acoustic scattering of field by medium
 - Stimulated Raman Scattering (SRS) Optical scattering of field by medium

Stimulated Brillouin scattering²

²A. Kobyakov, M. Sauer, and D. Chowdhury. "Stimulated Brillouin scattering in optical fibers". In: Advances in optics and photonics 2.1 (2010), pp. 1–59

- Large mode-area (LMA) fibers
 - Reduce optical intensity by increasing core size
 - Permit propagation of high-order modes
 - Susceptible to transverse mode instability (TMI) Interference of modes causes unstable exchange of energy, severely degrading coherence

Amplifier output

TMI simulation in a 20 cm long fiber using the vectorial Maxwell envelope model (2 kW pump)³

 3 Results from ongoing collaboration with S. Henneking (not yet published)

Physical coupling effects in optical materials⁴

- Nonlinear effects caused by interaction of physical phenomena
- Phenomena span multiple timescales (optical >> elastic >> thermal)
- Simplified models often fail to predict high-power operation

Our approach:

- High-fidelity models
- Scalable computation

⁴ J. F. Nye et al. Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, 1985

Outline

Scalable Simulation with hp3D

Fiber Model

Maxwell Equations:

$$\nabla \times \boldsymbol{\mathcal{E}} = -\frac{\partial \boldsymbol{\mathcal{B}}}{\partial t} \qquad \nabla \cdot \boldsymbol{\mathcal{D}} = \rho_f$$

$$abla imes \mathcal{H} = J_f + \frac{\partial \mathcal{D}}{\partial t} \qquad \nabla \cdot \mathcal{B} = 0$$

Constitutive Relations:

$$oldsymbol{\mathcal{B}} = \mu_0 oldsymbol{\mathcal{H}} + oldsymbol{\mathcal{I}} \ oldsymbol{\mathcal{D}} = \epsilon_0 oldsymbol{\mathcal{E}} + oldsymbol{\mathcal{P}}$$

Symbol	Description		
ε	Electric field		
\mathcal{H}	Magnetic field		
${\cal D}$	Electric flux density		
B	Magnetic flux density		
ϵ_0	Electric permittivity (vacuum)		
μ_0	Magnetic permeability (vacuum)		
J_f	(Free) Current density		
ρ_{f}	(Free) Charge density		
\mathcal{P}	Induced electric polarization		
\mathcal{I}	Induced magnetic polarization		

In silica glass:

- ullet Magnetization ${\mathcal I}$ is negligible
- ullet Polarization ${\boldsymbol{\mathcal{P}}}$ is expanded in terms of susceptibilities χ^i as

$$\boldsymbol{\mathcal{P}} = \epsilon_0 \left(\chi^{(1)} \cdot \boldsymbol{\mathcal{E}} + \chi^{(2)} : \boldsymbol{\mathcal{E}} \otimes \boldsymbol{\mathcal{E}} + \chi^{(3)} \vdots \boldsymbol{\mathcal{E}} \otimes \boldsymbol{\mathcal{E}} \otimes \boldsymbol{\mathcal{E}} + \dots \right)$$

ullet Linearizing high-order susceptibilities, define relative permittivity ${\pmb \varepsilon}_r = I + \chi^{(1)}$

Fiber Model

Maxwell Equations:

$$\begin{aligned} \nabla \times \boldsymbol{\mathcal{E}} &= -\frac{\partial \boldsymbol{\mathcal{B}}}{\partial t} & \nabla \cdot \boldsymbol{\mathcal{D}} &= \rho_f \\ \nabla \times \boldsymbol{\mathcal{H}} &= J_f + \frac{\partial \boldsymbol{\mathcal{D}}}{\partial t} & \nabla \cdot \boldsymbol{\mathcal{B}} &= 0 \end{aligned}$$

Constitutive Relations:

$$oldsymbol{\mathcal{B}} = \mu_0 oldsymbol{\mathcal{H}} + oldsymbol{\mathcal{I}} \ oldsymbol{\mathcal{D}} = \epsilon_0 oldsymbol{\mathcal{E}} + oldsymbol{\mathcal{P}}$$

Symbol	Description	
ε	Electric field	
\mathcal{H}	Magnetic field	
${\cal D}$	Electric flux density	
B	Magnetic flux density	
ϵ_0	Electric permittivity (vacuum)	
μ_0	Magnetic permeability (vacuum)	
J_f	(Free) Current density	
ρ_{f}	(Free) Charge density	
\mathcal{P}	Induced electric polarization	
Ι	Induced magnetic polarization	

In silica glass:

$$\nabla \times \boldsymbol{\mathcal{E}} = -\mu_0 \frac{\partial \boldsymbol{\mathcal{H}}}{\partial t} \qquad \nabla \cdot \left(\boldsymbol{\varepsilon}_r \boldsymbol{\mathcal{E}}\right) = 0$$
$$\nabla \times \boldsymbol{\mathcal{H}} = \epsilon_0 \frac{\partial \boldsymbol{\varepsilon}_r \boldsymbol{\mathcal{E}}}{\partial t} \qquad \nabla \cdot \boldsymbol{\mathcal{H}} = 0$$

Time-Harmonic Models

• Time-Harmonic Maxwell Model

Making the time-harmonic ansatz:

$$\mathcal{E}(x, y, z, t) = \Re \big\{ \mathbf{E}(x, y, z) e^{i\omega t} \big\} \qquad \qquad \mathcal{H}(x, y, z, t) = \Re \big\{ \mathbf{H}(x, y, z) e^{i\omega t} \big\}$$

the Maxwell model reduces to the time-harmonic Maxwell model:

$$\begin{cases} \nabla \times \mathbf{E} + i\omega\mu_0 \mathbf{H} = \mathbf{0} \\ \nabla \times \mathbf{H} - i\omega\epsilon_0 \boldsymbol{\varepsilon}_r \mathbf{E} = \mathbf{0} \end{cases}$$
(1)

• Vectorial Envelope Maxwell Model

We can instead solve for an envelope of the field by making the ansatz

$$\mathbf{E}(x,y,z) = \mathsf{E}(x,y,z)e^{-ikz} \qquad \qquad \mathbf{H}(x,y,z) = \mathsf{H}(x,y,z)e^{-ikz}$$

Time-harmonic Maxwell system (1) becomes

$$\begin{cases} \nabla \times \mathsf{E} - ik\mathbf{e}_{\mathbf{z}} \times \mathsf{E} + i\omega\mu_{0}\mathsf{H} = \mathbf{0} \\ \nabla \times \mathsf{H} - ik\mathbf{e}_{\mathbf{z}} \times \mathsf{H} - i\omega\epsilon_{0}\boldsymbol{\varepsilon}_{r}\mathsf{E} = \mathbf{0} \end{cases}$$

Vectorial Envelope Maxwell System

• Vectorial Envelope Maxwell Model

$$\begin{cases} \nabla \times \mathsf{E} - ik\mathbf{e}_{\mathbf{z}} \times \mathsf{E} + i\omega\mu_{0}\mathsf{H} = \mathbf{0} \\ \nabla \times \mathsf{H} - ik\mathbf{e}_{\mathbf{z}} \times \mathsf{H} - i\omega\epsilon_{0}\boldsymbol{\varepsilon}_{r}\mathsf{E} = \mathbf{0} \end{cases}$$

- Adds only additional linear terms; wave ansatz vanishes
- Suppose longitudinal frequency distributed as:

Choosing $k = \beta$ reduces longitudinal discretization requirements from $\mathcal{O}(\beta)$ to $\mathcal{O}(\delta\beta)$

Vectorial Envelope Approach – Discretization

We employ an ultraweak Discontinuous Petrov-Galerkin (DPG) discretization⁵,

where trace spaces are defined

$$\begin{split} \hat{U}_1 &:= \left\{ \hat{\mathbf{u}} \in H^{-1/2}(\mathsf{curl}, \Gamma_h) \,:\, \mathbf{n} \times \hat{\mathbf{u}} = \mathbf{n} \times \mathsf{E}_0 \ \text{ on } \ \Gamma_1 \right\}, \\ \hat{U}_2 &:= \left\{ \hat{\mathbf{u}} \in H^{-1/2}(\mathsf{curl}, \Gamma_h) \,:\, \mathbf{n} \times \hat{\mathbf{u}} = \mathbf{n} \times \mathsf{E}_0 \ \text{ on } \ \Gamma_2 \right\}, \end{split}$$

and discretized element-wise

$$H^{-1/2}(\operatorname{curl},\Gamma_h) := \Big\{ \hat{\mathbf{u}} \in \prod_{K \in \Omega_h} H^{-1/2}(\operatorname{curl},\partial K) : \exists \mathbf{u} \in H(\operatorname{curl},\Omega) : \gamma_t(\mathbf{u}_K) = \hat{\mathbf{u}} \Big\}.$$

We employ a weighted adjoint graph test norm:

$$||\mathfrak{v}||_V^2 := ||A^*\mathfrak{v}||^2 + \alpha^2 ||\mathfrak{v}||^2$$

⁵S. Henneking. "A scalable hp-adaptive finite element software with applications in fiber optics". PhD thesis. The University of Texas at Austin, 2021

Example - Time Harmonic Maxwell Fiber Model

Real part of \mathbf{E}_x (signal), 128 optical wavelengths

- UW-DPG discretization
- $\lambda = 1\,064~\mathrm{nm}$
- $n_1 = 1.4512$
- $n_2 = 1.45$
- $\bullet \ r_{\rm core} = 12.7\,\mu{\rm m}$
- $r_{\rm core} = 127\,\mu{\rm m}$

Example - Vectorial Envelope Maxwell Fiber Model

- ${\ensuremath{\, \bullet }}$ Vectorial envelope Maxwell model with k=80
- Fundamental mode has propagation constant $\beta \approx 86$
- Envelope has longitudinal wavenumber $\approx 86-80=6$

Real part of E_x (signal)

S. Henneking, J. Badger, and L. Demkowicz

Outline

(a) Scalable Simulation with hp3D

hp3D

Scalable finite element software supporting:

- Elements of all shapes
- Isotropic/anisotropic hp refinements
- Exact-sequence energy spaces
- Conforming discretization of traces
- Interfaces for PETSc, Zoltan, MUMPS, etc.
- Advanced solvers

GitHub repository:

• hp3D software: https://github.com/Oden-EAG/hp3d

Preprint documents:

- hp3D user manual: https://github.com/Oden-EAG/hp3d_user_guide
- hp Book Vol. 3: Computing with hp Finite Elements III. Parallel hp3D Code (upon request)

Nested Dissection Solver

- Quasi-1D geometry enables $\mathcal{O}(N \log N)$ for longitudinal refinement
- $\mathcal{O}(N^2)$ for transverse refinement/general geometries
- Need different approach for problems including:
 - Complex cross-section fibers
 - Bending of optical fibers

Mesh cross-section

Nested dissection interface schematic

DPG Mulitgrid Solver

The DPG-MG solver⁶ leverages three primary benefits of the DPG methodology:

- Hermitian positive definite discrete systems
- Preasymptotic (mesh-independent) stability
- Error indicator

- \rightarrow Multigrid preconditioned conjugate gradient
- \rightarrow Coarse initial meshes
- $\rightarrow hp$ -adaptivity

Solution on each mesh needed only to sufficient accuracy to define the next mesh; optimal meshes produced with relatively few iterations and at little cost

⁶S. Petrides and L. Demkowicz. "An adaptive multigrid solver for DPG methods with applications in linear acoustics and electromagnetics". In: Comput. Math. Appl. 87 (2021), pp. 12–26

Distributed DPG Multigrid Solver

- Multilevel preconditioner for general DPG systems⁷
- Leverages hp-adaptive multilevel hierarchy
- Supports:
 - Meshes of all element shapes
 - Isotropic/anisotropic refinements
- Hybrid MPI/OpenMP scalable implementation
- Dynamic repartitioning and load balancing

 h_{P} -adaptive mesh (top) and solution (bottom) to 3D linear acoustic problem produced by DPG-MG solver.

⁷Discretized with exact-sequence energy spaces

Distributed DPG Multigrid Solver

- Multilevel preconditioner for general DPG systems⁷
- Leverages hp-adaptive multilevel hierarchy
- Supports:
 - Meshes of all element shapes
 - Isotropic/anisotropic refinements
- Hybrid MPI/OpenMP scalable implementation
- Dynamic repartitioning and load balancing

 h_{P} -adaptive mesh (top) and solution (bottom) to 3D linear acoustic problem produced by DPG-MG solver.

⁷Discretized with exact-sequence energy spaces

DPG-MG - V-cycle

• The DPG-MG solver operates on interface degrees-of-freedom (DoFs); new interface DoFs on *h*-refined elements don't have any natural coarse-grid representatives

DPG-MG - V-cycle

- The DPG-MG solver operates on interface degrees-of-freedom (DoFs); new interface DoFs on *h*-refined elements don't have any natural coarse-grid representatives
- Macro grid defined by statically condensing interface unknowns with no coarse representative

DPG-MG - Prolongation

Two stage prolongation:

In Fine to Macro – Static condensation

Macro to Coarse – Constrained approximation⁸

S. Henneking, J. Badger, and L. Demkowicz

⁸ L. Demkowicz. Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, 2006

DPG-MG – Smoothing

- Additive Schwarz (overlapping block Jacobi) smoother
- Smoothing blocks correspond to macro grid DoFs supported on coarse grid vertex patches

DPG-MG – Dynamic Repartitioning

- Macro assembly and PCG iteration dominate computational cost
- $\bullet\,$ These operations scale differently under h and p refinements
- ${\ensuremath{\bullet}}$ In $hp\ensuremath{-}{\rm adaptive}$ scheme, both operations need to be balanced

Table:	Complexity	of	dominating	operations	in	DPG-MG solver ($\mathcal{O}($	•))
							- \	. /	

	p-refinement	h-refinement
Macro Assembly		
Elem. Assembly	p^9	h^{-3}
Condense Macro	p^6	h^{-6}
PCG Iteration		
Smooth	p^4	h^{-6}
Matrix mult.	p^4	h^{-3}

Two-step partitioning to balance cost of macro assembly and PCG iteration:

- **(**) Repartition fine(i) to define coarse(i + 1)
 - Weighted graph-based partitioner
 - Weights account for macro-grid assembly only

Two-step partitioning to balance cost of macro assembly and PCG iteration:

- **(**) Repartition fine(i) to define coarse(i + 1)
 - Weighted graph-based partitioner
 - Weights account for macro-grid assembly only

Partition smoothing patches

- Patches in a single subdomain claimed
- Patches shared by multiple subdomains partitioned (weighted partition balances smoothing cost)
- Ghost elements appended to complete patches

Two-step partitioning to balance cost of macro assembly and PCG iteration:

- **(**) Repartition fine(i) to define coarse(i + 1)
 - Weighted graph-based partitioner
 - Weights account for macro-grid assembly only

Partition smoothing patches

- Patches in a single subdomain claimed
- Patches shared by multiple subdomains partitioned (weighted partition balances smoothing cost)
- Ghost elements appended to complete patches
- **(a)** Execute refinements to define fine(i + 1)

Example – Acoustic Beam

Ultraweak Acoustics:

$$\begin{split} (p,u) &\in L^2(\Omega) \times (L^2(\Omega))^d \\ (\hat{p}, \hat{u}_n) &\in H^{\frac{1}{2}}(\Gamma_h) \times H^{-\frac{1}{2}}(\Gamma_h) \\ &i\omega(p,q) + (u, \nabla_h q) + \langle \hat{u}_n, q \rangle_{\Gamma_h} = \langle u_0, q \rangle_{\Gamma_u} \qquad q \in H^1(\Omega_h) : q = 0 \text{ on } \Gamma_p \\ &i\omega(u,v) + (p, \mathsf{div}_h v) + \langle \hat{p}, v_n \rangle_{\Gamma_h} = \langle p_0, v_n \rangle_{\Gamma_p} \qquad v \in H(\mathsf{div}, \Omega_h) : v_n = 0 \text{ on } \Gamma_u \end{split}$$

- Boundary conditions:
 - Impedence exterior boundary; manufactured gaussian beam data
 - Hard (Dirichlet) interior boundary
- Initial mesh:
 - 2736 hexahedral elements
 - Order p = 3
 - ca. 420 000 degrees-of-freedom (DoFs)
- Refinements:
 - Dörfler marking strategy (refinement factor = 0.5)
 - h-refinements until 2 elements/wavelength; then p-refinements⁹

⁹ J. Melenk and S. Sauter. "Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation". In: SIAM J. Numer. Anal. 49.3 (2011), pp. 1210–1243

Example – Adaptive solution

Cutaway of *hp*-adaptive mesh (left) and real part of acoustic pressure (right)

Example – PCG Iterations

- $\bullet~{\rm Smoothing~steps/level}=10$
- Relaxation parameter = 0.2
- PCG iteration terminated when norm of relative discrete residual is smaller than 10^{-4}

Number of PGC iterations at each grid level

Example – Partition

Cutaway illustrating mesh partition among 128 MPI processes (left), and redundant element computations due to ghosting (right)

Example – Strong Scaling

- Fine mesh: 20 adaptive refinements, 11 000 000 DoFs
- Resources:
 - Stampede2 Texas Advanced Computing Center (TACC)
 - Intel Xeon Platinum 8160 (Skylake) processors; 12 cores / MPI process

Strong scaling for ultraweak acoustic problem

Example – Strong Scaling

- Fine mesh: 25 adaptive refinements, 27 000 000 DoFs
- Resources:
 - Stampede2 Texas Advanced Computing Center (TACC)
 - Intel Xeon Platinum 8160 (Skylake) processors; 12 cores / MPI process

Strong scaling for ultraweak acoustic problem

Ongoing and Future Work

Fiber model

- Simulation of loss and polarization-dependent nonlinearities in bent optical fibers
- Simulation of pulsed optical fiber lasers

Distributed DPG-MG solver

- Anisotropic refinements
- Block Gauss-Seidel smoothing
- Mixed precision

Open-source code and hp FE book volume III

- \bullet Open-sourcing of the hp3D codebase under a BSD-4 license.
- Publishing the third volume of the hp FE book series.^{a,b}

^aL. Demkowicz. Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Press, Taylor and Francis, 2006

bL. Demkowicz et al. Computing with hp Finite Elements. II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC, 2007