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About

For an up-to-date version of the program and further information visit the workshop web page
http://minres.mat.uc.cl
Document version: October 4, 2022

Welcome

The aim of this workshop is to bring together leading international researchers in the area of
minimum residual and least-squares finite element methods. This is the fifth edition and takes
place Oct. 5-7, 2022 at the Pontifical Catholic University of Chile in Santiago, Chile. The first
workshop in this series took place 2013 in Austin, followed by the second workshop 2015 in Delft,
the third one 2017 in Portland, and the fourth one 2019 in Berlin.

Scientific committee

Pavel Bochev Sandia National Lab, USA
Zhiqiang Cai Purdue University, USA
Carsten Carstensen Humboldt–Universität zu Berlin, Germany
Wolfgang Dahmen University of South Carolina, USA
Leszek F. Demkowicz The University of Texas at Austin, USA
Jay Gopalakrishnan Portland State University, USA
Norbert Heuer Pontificia Universidad Católica de Chile, Chile
Rob Stevenson Universiteit van Amsterdam, Netherlands

Organizing committee

Norbert Heuer Pontificia Universidad Católica de Chile, Chile
Thomas Führer Pontificia Universidad Católica de Chile, Chile
Michael Karkulik Universidad Técnica Federico Santa María, Chile

Local assistant

Izabel Antle Pontificia Universidad Católica de Chile, Chile
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Timetable

Wednesday, Oct. 5

9:15–9:30 Registration
9:30–11:30 Session 1 (Chair: N. Heuer)
9:30–10:00 L. Demkowicz DPG Progress at Oden
10:00–10:30 J. Badger Scalable simulation of fiber laser model with DPG
10:30–11:00 N. Roberts DPG for Vlasov: Two Formulations and Selected Results

11:00–11:30 M. Łoś
Least-squares space-time formulation for

advection-diffusion problem with efficient linear solver
based on matrix compression

11:30–12:15 Coffee
12:15–13:45 Session 2 (Chair: M. Sánchez)

12:15–12:45 M. Karkulik Space-time finite elements for the optimal control of
parabolic equations

12:45–13:15 G. Gantner Applications of a space-time FOSLS formulation for
parabolic PDEs

13:15–13:45 C. Wieners
Space-time Discontinuous Galerkin methods and

Discontinuous Petrov-Galerkin methods for hyperbolic
linear Friedrichs systems

13:45–15:00 Lunch
15:00–16:30 Session 3 (Chair: F. Fuentes)

15:00–15:30 A.
Chakraborty

A continuous hp-mesh model for DPG finite element
schemes with optimal test functions

15:30–16:00 P. Vega An adaptive superconvergent finite element method
based on local residual minimization

16:00–16:30 J. Mora Using PolyDPG to simulate nonlinear mechanics of
elastomers

16:30–17:00 Coffee
17:00–18:00 Session 4 (Chair: I. Muga)

17:00–17:30 F. Bertrand Approximation of eigenvalue problems with MINRES:
Recent advances

17:30–18:00 D. Boffi On the computation of Maxwell’s eigenvalues with nodal
elements

18:00–19:00 Wine reception
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Thursday, Oct. 6

9:30–11:30 Session 5 (Chair: M. Karkulik)

9:30–10:00 Z. Cai Least-Squares Neural Network (LSNN) Method for
Hyperbolic Conservation Laws

10:00–10:30 F. Bersetche A deep first-order system least squares method for solving
elliptic PDEs

10:30–11:00 P. Sepúlveda A machine learning least-squares method with a weighted
norm

11:00–11:30 I. Muga Neural Control of Discrete Weak Formulations of PDEs
11:30–12:15 Coffee
12:15–13:45 Session 6 (Chair: J. Gopalakrishnan)
12:15–12:45 T. Führer MINRES for second-order PDEs with singular data
12:45–13:15 S. Rojas Regularization of rough linear functionals and adaptivity
13:15–13:30 P. Herrera A DPG method for the quad-div problem

13:30–13:45 P. Bringmann Convergence analysis and numerical comparison of
adaptive least-squares finite element methods

13:45–15:00 Lunch
15:00–16:00 Session 7 (Chair: P. Sepúlveda)

15:00–15:30 F. Fuentes
Rigorous global minimization of nonlinear integral
functionals using finite element discretizations and

polynomial optimization

15:30–16:00 K. Shi An L1 mixed DG method for second-order Elliptic
Equations in the Non-divergence Form

16:00–16:30 Coffee
16:30–17:30 Session 8 (Chair: S. Rojas)

16:30–17:00 J. Muñoz-
Matute

DPG time-marching scheme with DPG semidiscretization
is space for transient advection-reaction equations

17:00–17:30 R. Stevenson Robust least-squares methods for the Helmholtz equation
20:00 Dinner

Friday, Oct. 7

10:00–11:30 Session 9 (Chair: T. Führer)
10:00–10:30 C. Carstensen Towards adaptive Hybrid high-order methods (HHO)
10:30–11:00 A. Niemi DPG approach for dealing with stress concentrations
11:00–11:30 N. Heuer DPG for Reissner-Mindlin plates, Part 2
11:30–12:30 Coffee / Snacks

12:30 Excursion
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Useful Information

Talks will be held in lecture hall R28 situated on Campus Oriente of the Pontificia Universidad
Católica de Chile. Signs will indicate the way to the lecture hall when you arrive at the campus
(Jaime Guzmán Errázuriz 3300, Providencia).

Coffee is offered during designated breaks in front of the lecture hall.

Lunch is served during lunch break at the refectory.

WiFi is available through EDUROAM or alternatively, via the net UCeventos (password is published
during the workshop).

The conference dinnerwill be held at the Restaurant Park Lane of the Hotel Park Plaza (Av. Ricardo
Lyon 207, Providencia).

The excursion scheduled for Friday afternoon will take us to the Matetic Vineyards. The trip
includes a tour of the winery and a wine tasting. A shuttle bus will take us there and departures
approximately at 12:30 from the conference site. The bus will return approx. between 17:30 and
18:00 to the Hotel Park Plaza.
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Transportation

Transfer from hotel to conference site

A shuttle bus from Hotel Park Plaza to the conference site and back is organized. OnWednesday
and Thursday morning the bus to the conference site leaves at 8:40 am from Hotel Park Plaza
(waiting in the street Diego de Velasquez, just right from the hotel when looking at it). There is
a map of the hotel location on the website http://minres.mat.uc.cl. On Fridaymorning the
bus leaves at 9:00 am.

Public transportation

Public transport in Santiago includes various subway and bus lines. It has to be paid with prepaid
cards. A one way trip (including line changes) is about 800 CLP (less than 1 USD). You need to top
your card before your trip. You can buy a card resp. top your card in any metro station. An overview
of the transportation network can be found at https://www.red.cl/en/.

The metro stations closest to the hotels "Hotel Santiago Park Plaza", "Le Reve Boutique Hotel", and
"Mr. Hoteles Providencia" are "Los Leones" and "Pedro de Valdivia", both Line 1.

The metro station closest to the workshop site is "Chile-España" (Line 3). Several bus lines have
stops close to the workshop site. You can use the site www.red.cl (Plan a journey) to plan your
trip with public transportation. Transportation between a place close to the hotels "Hotel Santiago
Park Plaza", "Le Reve Boutique Hotel", and "Mr. Hoteles Providencia" and the workshop location
will be provided.

Taxi

There are many taxis in Santiago which have to be paid in cash (local currency). Be aware that most
of the drivers do not speak English. You can also use Uber (which requires internet connection).
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DPG PROGRESS AT ODEN

LESZEK DEMKOWICZ⋆

ABSTRACT

I will give a progress report on three DPG related research subjects
that we are currently pursuing in my group.

First, I will report on extensive numerical experiments for the double
adaptivity method in context of 2D confusion problem and higher order
elements. I will outline two different codes that we have built, the first
one based on two independent data structures and the use of pointers,
and the second one based on a single data structure but the use of
weakly conforming elements that are not covered by the theory. This
is a joint work with Jacob Salazar [1].

Then I will report on a stability and convergence analysis for acoustic
and Maxwell waveguide problems and the full envelope approximation.
The use of the exponential ansatz results in modified acoustics and
Maxwell problems that are solved with the DPG method based on the
ultraweak formulation. This is a joint work with Markus Melenk and
Stefan Henneking [2].

Finally, I will report some preliminary numerical results on com-
bining the DPG method with my old automatic hp-adaptivity scheme
[3]. Utilizing the ultraweak DPG method, we replace the globally hp-
refined grid, with an hp-refined grid based on DPG residual estimate,
and the Projection-Based (PB) interpolation with just L2-projections.
This work is being done with Jonathan Zhang.

References

[1] Salazar, J. and Demkowicz, L., The double adaptivity paradigm: conforming vs.
weakly conforming test functions, Oden Institute Report 2021/15, submitted.

[2] Melenk, M., Demkowicz, L. and Henneking, S., Convergence of full envelope
DPG method for waveguide problems, in preparation.

[3] Demkowicz, L. Computing with hp Finite Elements, Chapman & Hall/CRC
Press, Taylor and Francis, Boca Raton 2006.

⋆ Oden Institute, UT Austin, leszek@oden.utexas.edu
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SCALABLE SIMULATION OF FIBER LASER MODEL
WITH DPG

STEFAN HENNEKING, JACOB BADGER⋆, LESZEK DEMKOWICZ

ABSTRACT

Development of increasingly high-power fiber laser systems is of in-
terest for a range of applications including manufacturing, medicine,
and military defense. Power scaling of fiber lasers is limited by a com-
plex trade-space of deleterious nonlinear effects including transverse
mode instability (TMI)—a phenomenon in which interference of fiber
modes induces an oscillatory thermal profile, resulting in chaotic trans-
fer of energy between modes and degrading beam coherence. Modeling
and simulation can provide valuable tools for exploring fiber designs
that mitigate nonlinear effects; unfortunately, many simplified models
fail to accurately predict high-power performance, explaining the need
for high-fidelity modeling of fiber laser systems.

A coupled vectorial Maxwell and heat model under a DPG finite
element discretization was recently used to simulate TMI in a step-
index continuous-wave active-gain fiber laser amplifier in [1]; however,
the computational expense of resolving highly-oscillatory electromag-
netic fields limited the scale of simulation to < 1 cm of fiber. In the
present work, the Maxwell model is supplanted by an equivalent vecto-
rial envelope model that significantly eases discretization requirements;
enabling three-dimensional simulation of TMI in full-length fibers with
> 1 000 000 optical wavelengths. This model is currently limited to
fibers with simple cross-sections due to relatively poor scaling of avail-
able solvers under transverse refinement; we thus detail progress on
a distributed implementation of a scalable DPG multigrid solver [3]
to enable simulation of more complex fiber geometries, including fiber
bending effects.

The fiber laser model and DPG-MG solver are implemented in hp3D1—
an open-source scalable hp-adaptive finite element software [2].

1 https://github.com/Oden-EAG/hp3d
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STEFAN HENNEKING, JACOB BADGER⋆, LESZEK DEMKOWICZ

References

[1] Henneking, S., A scalable hp-adaptive finite element software with applications
in fiber optics, Ph.D. thesis, The University of Texas at Austin (2021).

[2] Henneking, S. and Demkowicz, L., hp3D User Manual, arXiv:2207.12211, Jun.
2022.

[3] Petrides, S. and Demkowicz, L., An adaptive multigrid solver for DPG meth-
ods with applications in linear acoustics and electromagnetics, Comput. Math.
Appl. 87 (2021), pp. 1999–2017.

⋆ University of Texas at Austin, jcbadger@utexas.edu



DPG FOR VLASOV: TWO FORMULATIONS AND
SELECTED RESULTS

NATHAN V. ROBERTS, STEPHEN D. BOND, AND ERIC C. CYR

ABSTRACT

Efficient solution of the Vlasov equation, which can be up to six-
dimensional, is key to the simulation of many difficult problems in
plasma physics. The discontinuous Petrov-Galerkin (DPG) finite ele-
ment methodology provides a framework for the development of stable
(in the sense of LBB conditions) finite element formulations, with built-
in mechanisms for adaptivity. We present two DPG-based formulations
for Vlasov: a time-marching, backward-Euler formulation, and a space-
time formulation, with an ultimate target of solving problems in the full
seven-dimensional setting. For this purpose, we employ tensor-product
data representations supported by recent additions to the Intrepid2
package within Trilinos, as well as corresponding developments within
Camellia, a finite element library designed to facilitate rapid develop-
ment of computationally efficient, hp-adaptive finite element solvers,
starting with support for DPG. In this talk, we discuss our progress to
date, including adaptive results from 1D1V time-marching and space-
time Vlasov-Poisson problems.

References

[1] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger
P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray
S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley.
An Overview of the Trilinos Project. ACM Trans. Math. Softw. (2005), 397-
423. doi.org/10.1145/1089014.1089021.

[2] Nathan V. Roberts. Camellia: A Rapid Development Framework for Fi-
nite Element Solvers. Computational Methods in Applied Mathematics (2019).
doi.org/10.1515/cmam-2018-0218.

⋆ Sandia National Laboratories, nvrober@sandia.gov
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LEAST-SQUARES SPACE-TIME FORMULATION FOR
ADVECTION-DIFFUSION PROBLEM WITH

EFFICIENT LINEAR SOLVER BASED ON MATRIX
COMPRESSION

MARCIN ŁOŚ⋆, MACIEJ PASZYŃSKI, MATEUSZ DOBIJA, ANNA
PASZYŃSKA, PAULINA SEPÚLVEDA SALAS

ABSTRACT

We present a space-time formulation of the non-stationary advection-
dominated advection-diffusion problem based on a constrained least-
squares approach. For discretization we use Isogeometric Analysis
and employ B-spline basis functions. While using standard separate
time and space discretization, in some restricted cases it is possible
to construct highly efficient linear solvers exploiting the structure of
the problem and the time stepping schemes (e.g. [1]), with space-time
formulation the resulting matrix has a more complex structure. We
present the idea of an iterative solver employing a matrix compression
technique based on recursive decomposition and singular value decom-
position (SVD).

This work is supported by The European Union’s Horizon 2020 Re-
search and Innovation Program of the Marie Skłodowska-Curie grant
agreement No. 777778, MATHROCKs.

References

[1] Behnoudfar, P., Calo, V.M., Łoś, M., Maczuga, P., Paszyński, M., Variational
splitting of high-order linear multistep methods for heat transfer and advec-
tion–diffusion parabolic problems, Journal of Computational Science 63 (2022),
pp. 1-11.

⋆ AGH University of Science and Technology, los@agh.edu.pl

1

14



SPACE-TIME FINITE ELEMENTS FOR THE OPTIMAL
CONTROL OF PARABOLIC EQUATIONS

THOMAS FÜHRER, MICHAEL KARKULIK⋆

ABSTRACT

Recently, [1, 3] introduced space-time finite element methods for par-
abolic equations which are robust on space-time locally refined meshes
and also easy to implement. In this talk, we show how to apply this ap-
proach to the optimal control of parabolic equations, cf. [2]. We give a
short introduction on optimal control of PDE and point out the inher-
ent problems when discretizing optimal control problems of parabolic
equations with classical time-stepping methods. Then, we proceed with
an a-priori as well as a-posteriori analysis of our new method. Finally,
we conclude with some numerical experiments.

References

[1] T. Führer, M. Karkulik. Space-time least-squares finite elements for parabolic
equations, Comput. Math. Appl., 92 (2021).

[2] T. Führer, M. Karkulik. Space-time finite element methods for parabolic dis-
tributed optimal control problems , arXiv:2208.09879, (2022).

[3] G. Gantner, R. Stevenson. Further results on a space-time FOSLS formulation
of parabolic PDEs, ESAIM Math. Model. Numer. Anal. 55.1 (2021).

⋆ Departamento de Matemática, Universidad Técnica Federico Santa
María, Valparaíso, Chile, michael.karkulik@usm.cl
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APPLICATIONS OF A SPACE-TIME FOSLS
FORMULATION FOR PARABOLIC PDES

GREGOR GANTNER⋆, ROB STEVENSON

ABSTRACT

While the common space-time variational formulation of a parabolic
equation results in a bilinear form that is non-coercive, [1] recently
proved well-posedness of a space-time first-order system least-squares
(FOSLS) formulation of the heat equation, which corresponds to a sym-
metric and coercive bilinear form. In particular, the Galerkin approxi-
mation from any conforming trial space exists and is a quasi-best ap-
proximation. Additionally, the least-squares functional automatically
provides a reliable and efficient error estimator. In [2], we have gener-
alized the least-squares method of [1] to general second-order parabolic
PDEs with possibly inhomogenoeus Dirichlet or Neumann boundary
conditions. For homogeneous Dirichlet conditions, we present conver-
gence of a standard adaptive finite element method driven by the least-
squares estimator [2]. The convergence analysis is applicable to a wide
range of least-squares formulations for other PDEs, answering a long-
standing open question in the literature. Moreover, we employ the
space-time least-squares method for parameter-dependent problems as
well as optimal control problems [3]. In both cases, coercivity of the
corresponding bilinear form plays a crucial role. Optimal control prob-
lems have been considered in parallel by [4].

References

[1] T. Führer and M. Karkulik., Space–time least-squares finite elements for par-
abolic equations, Comput. Math. Appl. 92 (2021), 27–36.

[2] G. Gantner and R. Stevenson, Further results on a space-time FOSLS for-
mulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal. 55.1 (2021),
283–299.

[3] G. Gantner and R. Stevenson, Applications of a space-time FOSLS formulation
for parabolic PDEs, Preprint, arXiv:2208.09616 (2022).

[4] T. Führer and M. Karkulik., Space-time finite element methods for parabolic
distributed optimal control problems, Preprint, arXiv:2208.09879 (2022).

⋆ Institute of Analysis and Scientific Computing, TU Wien, Austria,
gregor.gantner@asc.tuwien.ac.at
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SPACE-TIME DISCONTINUOUS GALERKIN METHODS
AND DISCONTINUOUS PETROV-GALERKIN METHODS
FOR HYPERBOLIC LINEAR FRIEDRICHS SYSTEMS

CHRISTIAN WIENERS⋆

ABSTRACT

We study weak solutions and its approximation of hyperbolic linear
symmetric first-order Friedrichs systems describing acoustic, elastic, or
electro-magnetic waves. A DGP method for acoustics is considered in
[2, 3]; convergence for the ideal DPG method is analyzed in the graph
norm. For a discontinuous Galerkin discretization with full upwind in
space and time, inf-sup stability and convergence estimates are pro-
vided with respect to a mesh-dependent DG norm in [1]; this relaxes
the regularity assumptions required in the graph norm and improves
the estimates the by a factor h1/2 in the space-time cylinder.

In this talk we show that the results for the space-time DG method
in the mesh-dependent DG norm transfer to Petrov–Galerkin methods
by constructing suitable discrete Fortin operators which extend the inf-
sup stability of the mesh-dependent DG method to inf-sup stability of
the Petrov–Galerkin method. This provides convergence estimates for
different variations of discontinuous Petrov-Galerkin methods, where
the trace spaces are discontinuous on the space-time skeleton.

References

[1] D. Corallo, W. Dörfler, and C. Wieners. Space-time discontinuous Galerkin
methods for weak solutions of hyperbolic linear symmetric Friedrichs systems.
CRC 1173 Preprint 2022/36, Karlsruhe Institute of Technology, 2022.

[2] J. Ernesti and C. Wieners. A space-time DPG method for acoustic waves. In
U. Langer and O. Steinbach, editors, Space-Time Methods. Applications to
Partial Differential Equations, volume 25 of Radon Series on Computational
and Applied Mathematics, pages 89–116. Walter de Gruyter, 2019.

[3] J. Ernesti and C. Wieners. Space-time discontinuous Petrov-Galerkin methods
for linear wave equations in heterogeneous media. Computational Methods in
Applied Mathematics, 19(3):465–481, 2019.

⋆Institute of Applied and Numerical Mathematics, KIT, Karlsruhe,
Germany, christian.wieners@kit.edu
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A CONTINUOUS hp−MESH MODEL FOR DPG FINITE
ELEMENT SCHEMES WITH OPTIMAL TEST

FUNCTIONS

ANKIT CHAKRABORTY⋆, GEORG MAY

ABSTRACT

In many industrial and academic applications, certain quantities of
interest, such as flux across a specific boundary or solution in a particu-
lar sub-domain, are subject to more interest than the solution variable
itself. In these cases, adapting the mesh for resolving the governing
PDE’s solution features may result in an unwanted increase in the
number of degrees of freedom. In this context, goal-oriented mesh
adaptation techniques have been critical for producing meshes that
only focus on resolving the target functional. Typically, these adapta-
tion techniques often compute the element size distribution by solving
a compatible dual problem. However, this can be complemented by
selecting a correct local polynomial order for approximating the primal
variables.

In terms of meshing techniques, it has already been shown that
metric-based mesh generation can produce anisotropic meshes having
substantial advantage while resolving anisotropic flow features such as
sharp boundary layers and singularities [2]. In this work, we present a
goal-oriented metric-based mesh adaptation scheme where we employ
the recently proposed DPG-star method for solving the compatible dual
problem and the associated a posteriori error estimate for computing
element size distribution. Also, we solve certain local problems and uti-
lize the well-established energy norm error estimator [1] to obtain an
appropriate polynomial order of approximation for the primal variables
and anisotropy of the elements in the mesh.
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AN ADAPTIVE SUPERCONVERGENT FINITE
ELEMENT METHOD BASED ON LOCAL RESIDUAL

MINIMIZATION

IGNACIO MUGA, SERGIO ROJAS, PATRICK VEGA⋆

ABSTRACT

During the last decades, residual minimization methods has been in-
creasing in popularity due to its stabilization properties. Among the
most popular is the discontinuous Petrov-Galerkin (dPG) method, in-
troduced in [1]. In 2020, a new residual based Adaptive Stabilized
Finite Element Method (AS-FEM) (see [2]) was introduced, combining
a residual minimization approach with the inf-sup stability offered by a
large class of discontinuous Galerkin (dG) methods. As in dPG meth-
ods, this method also delivers a stable solution and a residual represen-
tative. Inspired in [2], in this talk we will introduce a novel adaptive
stabilized finite element method for a class of mixed methods. The
method consists of performing a residual minimization in terms of the
Stenberg’s prostpocessing strategy (see [3]), being a superconvergent
and fully localizable postprocess for the scalar variable. As a result, we
obtain both, a superconvergent approximation for the scalar variable,
and a residual representative to drive the adaptivity. However, the new
scheme inherits the fully localizable property of Stenberg’s postprocess-
ing, implying that the cost of solving the residual minimization can be
neglected, making it competitive with respect to standard a posteri-
ori residual estimators. We will detail its derivation and will show its
performance considering challenging diffusion problems.
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USING POLYDPG TO SIMULATE NONLINEAR
MECHANICS OF ELASTOMERS

JAIME MORA-PAZ⋆, LESZEK DEMKOWICZ

ABSTRACT

The discontinuous Petrov-Galerkin (DPG) finite element methodol-
ogy is known to grant discrete stability for any well-posed variational
problem. The use of broken test spaces and the ultraweak variational
formulation have let DPG be applied on meshes of general polytopal
elements, a version of the method that we have labeled PolyDPG (see
[1, 2] for theory and numerics in 2D and 3D). According to the elasticity
models and numerical results developed in the 2020 PhD dissertation
[3], the 3D version of PolyDPG is capable of simulating large com-
pressive deformation of elastomeric foams that are modeled with hy-
perelastic constitutive relations, far overcoming the simulated stretches
attained with traditional finite elements. The proposed approach for
this kind of problem results in a better capturing of local deformations
and stresses, along with the formerly observed capacity of simulating
large global deformations.
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APPROXIMATION OF EIGENVALUE PROBLEMS
WITH MINRES: RECENT ADVANCES

FLEURIANNE BERTRAND⋆

ABSTRACT

Accurate flux approximations are of interest in many applications
and minimum residual methods involves the flux and the stress as inde-
pendent variables approximated in a suitable H(div)-conforming finite
element spaces. Considering the corresponding spectral problems is
helpful to determine the response of materials to a given phenomenon
and is crucial to our description of the world. In this talk, we therefore
discuss recent advances concerning the spectral properties of opera-
tors associated with the corresponding least-squares and discontinuous
Petrov-Galerkin finite-element minimization of the residual.
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ON THE COMPUTATION OF MAXWELL’S
EIGENVALUES WITH NODAL ELEMENTS

DANIELE BOFFI⋆

ABSTRACT

We consider the finite element approximation of the eigenvalues and
eigenfunctions of the resonant cavity associated with Maxwell’s equa-
tion.

It is well known that with a standard Galerkin formulation the op-
timal convergence is achieved when edge elements are used [4].

Recent results on the approximation of the spectrum associated with
finite element least squares formulations [3, 1, 2] can be extended to the
Maxwell eigenvalue problem. This is straightforward in two dimensions
and more elaborate in three dimensions.

One might wonder if such results are also valid when nodal elements
are used for the approximation of the electric field.

The aim of this talk is to give an answer to this question and to com-
pare the numerical results with other schemes involving nodal elements
such as [5].
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LEAST-SQUARES NEURAL NETWORK (LSNN)
METHOD FOR HYPERBOLIC CONSERVATION LAWS

ZHIQIANG CAI⋆, JINGSHUANG CHEN, MIN LIU

ABSTRACT

Solutions of nonlinear hyperbolic conservation laws (HCLs) are often
discontinuous due to shock formation; moreover, locations of shocks
are a priori unknown. This presents a great challenge for traditional
numerical methods because most of them are based on continuous or
discontinuous piecewise polynomials on fixed meshes.

As an alternative, by employing a new class of approximating func-
tions, neural network (NN), recently we proposed the least-squares neu-
ral network (LSNN) method for solving HCLs. The LSNN method
shows a great potential to sharply capture shock without oscillation or
smearing; moreover, its degrees of freedom are much less than those
of mesh-based methods. Nevertheless, current iterative solvers for the
LSNN discretization are computationally intensive and complicated.

In this talk, I will present our recent work [1, 2, 3] on the LSNN for
solving linear and nonlinear scalar HCLs.
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A DEEP FIRST-ORDER SYSTEM LEAST SQUARES
METHOD FOR SOLVING ELLIPTIC PDES

FRANCISCO BERSETCHE⋆

ABSTRACT

We propose a First-Order System Least Squares (FOSLS) method
based on deep-learning for numerically solving second-order elliptic
PDEs. The method we propose is capable of dealing with either varia-
tional and non-variational problems, and because of its meshless nature,
it can also deal with problems posed in high-dimensional domains. We
prove the Γ-convergence of the neural network approximation towards
the solution of the continuous problem, and extend the convergence
proof to some well-known related methods. Finally, we present several
numerical examples illustrating the performance of our discretization.
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A MACHINE LEARNING LEAST-SQUARES METHOD
WITH A WEIGHTED NORM.

IGNACIO BREVIS, IGNACIO MUGA, PAULINA SEPÚLVEDA⋆

ABSTRACT

A study of Neural Networks in combination with Finite Elements to
obtain approximations of parametric PDEs is presented. This study
is motivated by the works presented in [1] and [2]. The approach is
to obtain a least-squares formulation with a discontinuous test space,
endowed with a weighted inner product given by an artificial neural
network. The block structure of the discrete approximation associated
with the test inner product makes the computations easier to imple-
ment. Then, we train the modified scheme with a learning procedure
and use a loss function that minimizes the quantity of interest. The
potential of using Neural Networks for a parametric equation will be
presented using different quantities of interest and loss functions.
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NEURAL CONTROL OF DISCRETE WEAK
FORMULATIONS OF PDES

IGNACIO BREVIS, IGNACIO MUGA⋆, KRISTOFFER G. VAN DER ZEE

ABSTRACT

We introduce the concept of neural control of discrete weak formu-
lations of Partial Differential Equations (PDEs), in which finite el-
ement discretizations are intervened by using neural-network weight
functions. The weight functions act as control variables that –through
the minimization of a cost (or loss) functional– produce discrete solu-
tions incorporating user-defined desirable attributes (e.g., known-data
features, remotion of spurious oscillations, or precision at a certain
quantities of interest).

Well-posedness and convergence of the cost-minimization problem
are analyzed. In particular, we prove under certain conditions, that
the discrete weak forms are stable, and that quasi-minimizing neural
controls exist, which converge quasi-optimally. We specialize our anal-
ysis into Galerkin, least-squares, and minimal-residual formulations.
Elementary numerical experiments support our findings and demon-
strate the potential of the framework.
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MINRES FOR SECOND-ORDER PDES WITH
SINGULAR DATA

THOMAS FÜHRER⋆, NORBERT HEUER, MICHAEL KARKULIK

ABSTRACT

In this talk I present recent results on minimum residual meth-
ods (MINRES) for problems with singular data. Minimum residual
methods such as the least-squares finite element method (FEM) or
the discontinuous Petrov-Galerkin method with optimal test functions
(DPG) usually exclude singular data, e.g., non square-integrable loads.
We consider a DPG method and a least-squares FEM for the Pois-
son problem. For both methods we analyze regularization approaches
that allow the use of singular load functionals, and also study the case
of point loads. For all cases we prove appropriate convergence orders
and present various numerical experiments that confirm our theoretical
results.
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REGULARIZATION OF ROUGH LINEAR
FUNCTIONALS AND ADAPTIVITY

FELIPE MILLAR, IGNACIO MUGA, SERGIO ROJAS⋆, KRISTOFFER G.
VAN DER ZEE

ABSTRACT

Rough linear functionals, such as Dirac Delta distributions, often
appear on the right-hand side of variational formulations of PDEs. As
they live in negative Sobolev spaces, they dramatically affect adap-
tive finite element procedures to approximate the solution of a given
PDE. To overcome this drawback, we propose an alternative that, in a
first step, computes a projection of the rough functional over piecewise
polynomial spaces, up to a desired precision in a negative norm sense.
The projection, being Lp-regular, is then used as the right-hand side of
a regularized problem for which adaptive Galerkin methods performs
better. An error analysis of the proposed methodology will be shown,
together with numerical experiments.
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A DPG METHOD FOR THE QUAD-DIV PROBLEM

THOMAS FÜHRER, PABLO HERRERA⋆, NORBERT HEUER

ABSTRACT

The Quad-Div problem is related to the Quad-Curl problem in two
dimensions. This kind of problems arise in several engineering and
science problems, such as magneto-hydrodynamics, linear elasticity and
inverse scattering theory [1].

In this talk we discuss the Discontinous Petrov-Galerkin method with
optimal test functions (DPG method) [2] for the quad-div problem
in a bounded Lipschitz polyhedral domain. The DPG method is a
minimum residual method and is automatically stable. We develop
an ultraweak formulation of a second-order reformulation. We prove
its well-possedness in two and three dimensions. Then we construct a
Fortin operator for H(∇div) space and employ the DPG methodology
that yields a quasi-optimal convergent numerical squeme. Finally, we
show numerical experiments that confirms our theoretical results.
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CONVERGENCE ANALYSIS AND NUMERICAL
COMPARISON OF ADAPTIVE LEAST-SQUARES

FINITE ELEMENT METHODS

PHILIPP BRINGMANN⋆

ABSTRACT

Due to the built-in a posteriori error control, the least-squares fi-
nite element methods (LSFEMs) are a favourable choice for adaptive
mesh-refining algorithms. Convergence results have been established
for various adaptive LSFEMs in the literature. First, the built-in er-
ror estimator leads to Q-linear convergence in an adaptive algorithm
with collective marking [4]. Second, an alternative residual-based error
estimator and a separate marking strategy with data approximation
even guarantee optimal convergence rates for the error in the natural
underlying norm [2]. Third, collective marking with the alternative er-
ror estimator provides optimal convergence rates in a weaker norm [3].
An experimental comparison of all three adaptive algorithms confirms
these findings [1]. The first part of this talk outlines the state-of-the-
art for the convergence analysis of adaptive LSFEMs. The second part
investigates the choice of the parameters in the marking and refinement
strategies as well as the performance of the adaptive algorithms.
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RIGOROUS GLOBAL MINIMIZATION OF
NONLINEAR INTEGRAL FUNCTIONALS USING

FINITE ELEMENT DISCRETIZATIONS AND
POLYNOMIAL OPTIMIZATION

FEDERICO FUENTES⋆, GIOVANNI FANTUZZI

ABSTRACT

Computation of minima of nonlinear integral functionals (e.g. strain
energy) is typically done by using gradient descent methods or some
version of Newton’s method on the Euler-Lagrange PDEs associated
with the functional. These procedures only guarantee finding an ap-
proximation to a local minimum, but say nothing of whether the so-
lution is a global minimum of the functional, which is often the goal.
Finding an algorithm that provably converges to a global minimum
and corresponding minimizer is a classical and fundamental challenge
in many fields, including nonlinear elasticity, fluid mechanics, pattern
formation and PDE analysis. In this work, we leverage theoretical tools
from the fields of sparse polynomial optimization (within algebraic ge-
ometry) and finite element (FE) methods to present such an algorithm.
The techniques include exploiting properties of sparse sum-of-squares
(SOS) relaxations and Gamma convergence to prove convergence to
a global minimum of a functional with an integrand with polynomial
nonlinearities as the mesh is refined and the moment-SOS relaxation or-
der is raised. We present numerical examples which result in excellent
approximations to the global minima of different nonlinear function-
als, including the pattern-forming Swift-Hohenberg free energy in two
spatial dimensions.
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AN L1 MIXED DG METHOD FOR SECOND-ORDER
ELLIPTIC EQUATIONS IN THE NON-DIVERGENCE

FORM

WEIFENG QIU, JIN REN, KE SHI⋆ AND YUESHENG XU

ABSTRACT

In this talk we present an L1 mixed DG method for second-order
elliptic equations in the non-divergence form. The elliptic PDE in non-
divergence form arises in the linearization of fully nonlinear PDEs. Due
to the nature of the equations, classical finite element methods based
on variational forms can not be employed directly. In this work, we pro-
pose a new optimization based finite element method which combines
the classical DG framework with recently developed L1 optimization
technique. Convergence analysis in both energy norm and L∞ norm are
obtained under weak regularity assumption of the PDE (H1). Such L1

optimization problems are nondifferentiable and invalidate traditional
graidnet methods. To overcome this difficulty, we characterize solu-
tions of L1 optimization as fixed-points of proximity equations and uti-
lize matrix splitting technique to obtain a class of fixed-point proximity
algorithms with convergence analysis. In addition, various numerical
examples will be displayed to validate the analysis in the end.
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DPG TIME-MARCHING SCHEME WITH DPG
SEMIDISCRETIZATION IS SPACE FOR TRANSIENT

ADVECTION-REACTION EQUATIONS

J. MUÑOZ-MATUTE⋆, L. DEMKOWICZ, N. V. ROBERTS

ABSTRACT

We present a general methodology [1] to combine a Discontinuous
Petrov-Galerkin (DPG) semidiscretization in space together with the
recently developed DPG-based time-marching scheme [2, 3, 4] for tran-
sient advection-reaction problems. Regarding the semidiscretization in
space with DPG we redefine the ideas of optimal testing and practical-
ity of the method in this context. As the DPG-based time-marching
scheme is of exponential-type, we also discuss how to efficiently com-
pute the action of the exponential over vectors of the matrix coming
from the space semidiscretization without assembling the full matrix.
Finally, we verify the proposed method for 1D+time advection-reaction
problems showing optimal convergence rates both in space and time for
smooth solutions and more stable results for linear conservation laws
comparing to the classical exponential integrators. The method we
propose is practical in the computational sense and it can easily be
generalized to higher dimensions and to other problems.
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ROBUST LEAST-SQUARES METHODS FOR THE
HELMHOLTZ EQUATION

HARALD MONSUUR, ROB STEVENSON⋆

ABSTRACT

Inspired by [1], we present a well-posed ultra-weak first order system
formulation of the Helmholtz equation with possibly inhomogeneous
mixed Dirichlet, Neumann and Robin boundary conditions. By em-
ploying the optimal test-norm, least-squares discretizations yield the
best approximation of the solution in the L2-norm from the trial space.
We present numerical results for the corresponding ‘practical’ method,
as well as for an “LL∗”-method.
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TOWARDS ADAPTIVE HYBRID HIGH-ORDER
METHODS (HHO)

CARSTEN CARSTENSEN⋆, SOPHIE PUTTKAMMER, NGOC TIEN TRAN

ABSTRACT

The novel methodology of skeletal schemes led to a new generation of
nonstandard discretisations and HHO is one of many of those besides
HDG, VEM, DPG, ... that generalize naturally to nonlinear problems.
Can a variational crime lead to discretisations superior to conform-
ing ones? The key for the success of higher-order schemes is through
adaptive mesh-refining and the basis of this is a reliable and efficient a
posteriori error analysis. The later is a topic in its infancy at least for
HHO [5]. While over-stabilization enables some progress for DG and
VEM, it is a refined analysis [6] that makes a stabilization-free a poste-
riori error estimate possible for the HHO [1]. The presentation reports
on recent progress for linear problems [1] and then focusses on two very
different nonlinear applications with — in comparison to conforming
FEM — complementary advantages.

The fine-tuned extra-stabilized direct computation of guaranteed
lower eigenvalue bounds allows for optimal convergence rates of a vari-
ant of HHO [2]. The appealing robust parameter selection allows
the adaptive computation with higher convergence rates in numerical
benchmarks.

The class of degenerate convex minimization problems with two-
sided growth conditions and an appropriate convexity control [3, 4]
allows convergent adaptive mesh-refinement for the dual stress-type
variable.

The presentation reports on the state of research in joint projects
with S. Puttkammer (Berlin) and N.T. Tran (Jena)
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DPG APPROACH FOR DEALING WITH STRESS
CONCENTRATIONS

THOMAS FÜHRER, NORBERT HEUER, ANTTI H. NIEMI⋆

ABSTRACT

Stress concentrations may occur in structural engineering e.g. in the
vicinity of concentrated loads, abrupt transitions between materials or
sharp re-entrant corners. Whether the local stress peaks and distribu-
tions really matter from a practical perspective, or could be considered
as artefacts of the mathematical model, depends on the particular ap-
plication under consideration. In any case, accurate stress predictions
with evidence of convergence and knowledge of the stress peaks are
prerequisites for reliable failure predictions of structures.

In this presentation, a DPG approach suitable for strength analysis
of plate and shell structures is outlined. The underlying mathematical
models are assumed to be of Kirchhoff-Love type, where the transverse
shear stress resultants are defined in terms of the equilibrium equations
only. The DPG approach is based on the trace theory developed in [1].
Recently, a formulation that can capture adaptively boundary and in-
terior layers of curved shell deformations has been proposed in [2].
The presentation summarizes the most important theoretical findings
together with numerical convergence studies for selected benchmark
problems.
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DPG FOR REISSNER–MINDLIN PLATES, PART 2

THOMAS FÜHRER, NORBERT HEUER⋆, ANTTI H. NIEMI

ABSTRACT

The challenge of finding proper DPG settings for thin structure mod-
els consists in two parts: deriving a uniformly stable variational for-
mulation and dealing with locking phenomena. In [3], we presented
a variational formulation for the Kirchhoff–Love plate bending model,
the abstract limit case of the Reissner–Mindlin model. The results in
[3] apply to all physically relevant boundary conditions, and include
non-convex Lipschitz plates. In [5], we extended this setting to the
Reissner–Mindlin case, thus achieving a uniformly (with respect to the
plate thickness) stable formulation with resulting quasi-optimal DPG
scheme. These results were presented at the previous meeting, 2019
in Berlin. The question of appropriate discretization spaces and trans-
verse shear-locking was open in the case of non-smooth solutions. In
this talk we present a new formulation [4] that is based on a Helmholtz
decomposition of the shear force variable, a technique proposed by
Brezzi, Fortin [2] and thoroughly analyzed by Arnold, Falk [1] for a
mixed finite element scheme. Our DPG scheme is provably locking free
for convex hard-clamped plates.
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